|
This article is cited in 2 scientific papers (total in 2 papers)
On the definability of endomorphisms of a free group of the variety $\mathfrak{AM}$ by a finite set of values
E. I. Timoshenko Novosibirsk Engineering Building Institute
Abstract:
In the paper we find out in what cases any endomorphism of a free metabelian group of rank $n$ is uniquely determined by its values on finitely many elements of the group.
DOI:
https://doi.org/10.4213/mzm1681
Full text:
PDF file (151 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 1997, 62:6, 767–770
Bibliographic databases:
UDC:
512.544 Received: 14.08.1996 Revised: 10.06.1997
Citation:
E. I. Timoshenko, “On the definability of endomorphisms of a free group of the variety $\mathfrak{AM}$ by a finite set of values”, Mat. Zametki, 62:6 (1997), 916–920; Math. Notes, 62:6 (1997), 767–770
Citation in format AMSBIB
\Bibitem{Tim97}
\by E.~I.~Timoshenko
\paper On the definability of endomorphisms of a free group of the variety $\mathfrak{AM}$ by a finite set of values
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 6
\pages 916--920
\mathnet{http://mi.mathnet.ru/mz1681}
\crossref{https://doi.org/10.4213/mzm1681}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1635190}
\zmath{https://zbmath.org/?q=an:0931.20026}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 6
\pages 767--770
\crossref{https://doi.org/10.1007/BF02355466}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000075396200032}
Linking options:
http://mi.mathnet.ru/eng/mz1681https://doi.org/10.4213/mzm1681 http://mi.mathnet.ru/eng/mz/v62/i6/p916
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Chirkov, IV, “Determination of endomorphisms of free metabelian Lie algebras”, Siberian Mathematical Journal, 41:6 (2000), 1205
-
Esmerligil, Z, “Test sets and test rank of a free metabelian Lie algebra”, Communications in Algebra, 31:11 (2003), 5581
|
Number of views: |
This page: | 244 | Full text: | 83 | References: | 32 | First page: | 1 |
|