|
This article is cited in 2 scientific papers (total in 2 papers)
On Jackson's theorem in the space $\ell_2(\mathbb Z_2^n)$
V. I. Ivanov, O. I. Smirnov Tula State University
Abstract:
Estimates of Jackson's constants in the space v are given for the case of approximation by sums of subspaces on which irreducible representations of the isometry group of $\mathbb Z_2^n$ act and for the case in which the modulus of continuity is defined using generalized translations.
Coding theory results on efficiency estimates for binary $d$-codes with respect to the Hamming distance are used.
DOI:
https://doi.org/10.4213/mzm1839
Full text:
PDF file (199 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 1996, 60:3, 288–299
Bibliographic databases:
UDC:
517.5 Received: 13.02.1996
Citation:
V. I. Ivanov, O. I. Smirnov, “On Jackson's theorem in the space $\ell_2(\mathbb Z_2^n)$”, Mat. Zametki, 60:3 (1996), 390–405; Math. Notes, 60:3 (1996), 288–299
Citation in format AMSBIB
\Bibitem{IvaSmi96}
\by V.~I.~Ivanov, O.~I.~Smirnov
\paper On Jackson's theorem in the space $\ell_2(\mathbb Z_2^n)$
\jour Mat. Zametki
\yr 1996
\vol 60
\issue 3
\pages 390--405
\mathnet{http://mi.mathnet.ru/mz1839}
\crossref{https://doi.org/10.4213/mzm1839}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1428853}
\zmath{https://zbmath.org/?q=an:0905.41008}
\transl
\jour Math. Notes
\yr 1996
\vol 60
\issue 3
\pages 288--299
\crossref{https://doi.org/10.1007/BF02320366}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1996WN90400007}
Linking options:
http://mi.mathnet.ru/eng/mz1839https://doi.org/10.4213/mzm1839 http://mi.mathnet.ru/eng/mz/v60/i3/p390
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. G. Babenko, “An exact Jackson–Stechkin inequality for $L^2$-approximation on the interval with the Jacobi weight and on projective spaces”, Izv. Math., 62:6 (1998), 1095–1119
-
S. S. Platonov, “Some problems in the theory of approximation of functions on compact homogeneous manifolds”, Sb. Math., 200:6 (2009), 845–885
|
Number of views: |
This page: | 309 | Full text: | 112 | References: | 40 | First page: | 3 |
|