RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2003, Volume 73, Issue 6, Pages 853–860 (Mi mz233)  

This article is cited in 11 scientific papers (total in 11 papers)

Real Algebraically Maximal Varieties

V. A. Krasnov

P. G. Demidov Yaroslavl State University

Abstract: For real algebraic varieties whose real algebraic cohomology group is maximal, a canonical homomorphism is constructed from the cohomology group of the set of complex points into the cohomology group of the set of real points, and then it is proved that this homomorphism is an isomorphism.

DOI: https://doi.org/10.4213/mzm233

Full text: PDF file (176 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2003, 73:6, 806–812

Bibliographic databases:

UDC: 512.7
Received: 08.05.2002

Citation: V. A. Krasnov, “Real Algebraically Maximal Varieties”, Mat. Zametki, 73:6 (2003), 853–860; Math. Notes, 73:6 (2003), 806–812

Citation in format AMSBIB
\Bibitem{Kra03}
\by V.~A.~Krasnov
\paper Real Algebraically Maximal Varieties
\jour Mat. Zametki
\yr 2003
\vol 73
\issue 6
\pages 853--860
\mathnet{http://mi.mathnet.ru/mz233}
\crossref{https://doi.org/10.4213/mzm233}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2010655}
\zmath{https://zbmath.org/?q=an:1067.14060}
\transl
\jour Math. Notes
\yr 2003
\vol 73
\issue 6
\pages 806--812
\crossref{https://doi.org/10.1023/A:1024049813496}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000183962500026}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0345863529}


Linking options:
  • http://mi.mathnet.ru/eng/mz233
  • https://doi.org/10.4213/mzm233
  • http://mi.mathnet.ru/eng/mz/v73/i6/p853

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bihan, F, “Is every toric variety an M-variety?”, Manuscripta Mathematica, 120:2 (2006), 217  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    2. Franz, M, “Steenrod squares on conjugation spaces”, Comptes Rendus Mathematique, 342:3 (2006), 187  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    3. V. A. Krasnov, “Real algebraic varieties and cobordism”, Izv. Math., 71:3 (2007), 573–601  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    4. Van Hamel, J, “Geometric cohomology frames on Hausmann-Holm-Puppe conjugation spaces”, Proceedings of the American Mathematical Society, 135:5 (2007), 1557  crossref  mathscinet  zmath  isi  scopus  scopus
    5. Henderson, A, “The equivariant Euler characteristic of real Coxeter toric varieties”, Bulletin of the London Mathematical Society, 41 (2009), 515  crossref  mathscinet  zmath  isi  scopus  scopus
    6. Rains E.M., “The homology of real subspace arrangements”, Journal of Topology, 3:4 (2010), 786–818  crossref  mathscinet  zmath  isi  scopus  scopus
    7. Etingof P., Henriques A., Kamnitzer J., Rains E.M., “The cohomology ring of the real locus of the moduli space of stable curves of genus 0 with marked points”, Ann of Math (2), 171:2 (2010), 731–777  crossref  mathscinet  zmath  isi  scopus  scopus
    8. Gaiffi G., Serventi M., “Poincaré Series for Maximal de Concini-Procesi Models of Root Arrangements”, Rend. Lincei-Mat. Appl., 23:1 (2012), 51–67  crossref  mathscinet  zmath  isi  scopus  scopus
    9. Gaiffi G., Serventi M., “Families of Building Sets and Regular Wonderful Models”, Eur. J. Comb., 36 (2014), 17–38  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    10. Callegaro F., Gaiffi G., “on Models of the Braid Arrangement and Their Hidden Symmetries”, Int. Math. Res. Notices, 2015, no. 21, 11117–11149  crossref  mathscinet  zmath  isi  scopus  scopus
    11. V. A. Krasnov, “On intersections of two real quadrics”, Izv. Math., 82:1 (2018), 91–139  mathnet  crossref  crossref  adsnasa  isi  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:228
    Full text:67
    References:32
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019