RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1993, Volume 54, Issue 2, Pages 33–38 (Mi mz2386)  

This article is cited in 9 scientific papers (total in 9 papers)

On the summability of regularized traces of differential operators

V. A. Lyubishkin, V. E. Podolskii


Full text: PDF file (501 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 1993, 54:2, 790–793

Bibliographic databases:

UDC: 517.5
Received: 01.02.1993

Citation: V. A. Lyubishkin, V. E. Podolskii, “On the summability of regularized traces of differential operators”, Mat. Zametki, 54:2 (1993), 33–38; Math. Notes, 54:2 (1993), 790–793

Citation in format AMSBIB
\Bibitem{LyuPod93}
\by V.~A.~Lyubishkin, V.~E.~Podolskii
\paper On the summability of regularized traces of differential operators
\jour Mat. Zametki
\yr 1993
\vol 54
\issue 2
\pages 33--38
\mathnet{http://mi.mathnet.ru/mz2386}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1244979}
\zmath{https://zbmath.org/?q=an:0878.47034}
\transl
\jour Math. Notes
\yr 1993
\vol 54
\issue 2
\pages 790--793
\crossref{https://doi.org/10.1007/BF01212842}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1993NL24600018}


Linking options:
  • http://mi.mathnet.ru/eng/mz2386
  • http://mi.mathnet.ru/eng/mz/v54/i2/p33

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. E. Podolskii, “The formula of the regularized trace for the Laplace–Beltrami operator with odd potential on the sphere $S^2$”, Math. Notes, 56:1 (1994), 699–703  mathnet  crossref  mathscinet  zmath  isi
    2. A. N. Bobrov, V. E. Podolskii, “On the Convergence of the Trace of a Power of the Laplace–Beltrami Operator with a Potential on the Sphere $S^n$”, Funct. Anal. Appl., 31:4 (1997), 280–282  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. A. N. Bobrov, V. E. Podolskii, “Convergence of regularized traces of powers of the Laplace–Beltrami operator with potential on the sphere $S^n$”, Sb. Math., 190:10 (1999), 1401–1415  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. A. M. Savchuk, A. A. Shkalikov, “Trace Formula for Sturm–Liouville Operators with Singular Potentials”, Math. Notes, 69:3 (2001), 387–400  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. V. A. Sadovnichii, V. E. Podolskii, “Traces of operators”, Russian Math. Surveys, 61:5 (2006), 885–953  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    6. N. M. Aslanova, “A trace formula of a boundary value problem for the operator Sturm–Liouville equation”, Siberian Math. J., 49:6 (2008), 959–967  mathnet  crossref  mathscinet  isi  elib
    7. Sadovnichii, VA, “Traces of differential operators”, Differential Equations, 45:4 (2009), 477  crossref  mathscinet  zmath  isi
    8. Yang Ch.F., “New trace formulae for a quadratic pencil of the Schroumldinger operator”, Journal of Mathematical Physics, 51:3 (2010), 033506  crossref  adsnasa  isi
    9. Yang Ch.F., Huang Zh.Y., Wang Yu.P., “Trace Formulae for the Schrodinger Equation with Energy-Dependent Potential”, J. Phys. A-Math. Theor., 43:41 (2010), 415207  crossref  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:236
    Full text:103
    References:23
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020