RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2004, Volume 75, Issue 2, Pages 208–221 (Mi mz24)  

Commutative Subalgebras of Quantum Algebras

S. A. Zelenova

M. V. Lomonosov Moscow State University

Abstract: In the present paper, a general assertion is proved, claiming that, for every associative algebra $\mathscr A$ without zero divisors which admits a valuation and a seminorm concordant with the valuation, the transcendence degree of an arbitrary commutative subalgebra does not exceed the maximal number of independent pairwise pseudocommuting elements of some basis of the algebra $\mathscr A$. The author shows that for such a algebra $\mathscr A$ one can take an arbitrary algebra of quantum Laurent polynomials, quantum analogs of the Weyl algebra, and also some universal coacting algebras. In the case of the algebra $\mathscr L$ of quantum Laurent polynomials, it is proved that the transcendence degree of a maximal commutative subalgebra of $\mathscr L$ coincides with the maximal number of independent pairwise commuting elements of the monomial basis of the algebra $\mathscr L$.

DOI: https://doi.org/10.4213/mzm24

Full text: PDF file (246 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2004, 75:2, 190–201

Bibliographic databases:

UDC: 512.552

Citation: S. A. Zelenova, “Commutative Subalgebras of Quantum Algebras”, Mat. Zametki, 75:2 (2004), 208–221; Math. Notes, 75:2 (2004), 190–201

Citation in format AMSBIB
\Bibitem{Zel04}
\by S.~A.~Zelenova
\paper Commutative Subalgebras of Quantum Algebras
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 2
\pages 208--221
\mathnet{http://mi.mathnet.ru/mz24}
\crossref{https://doi.org/10.4213/mzm24}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2054553}
\zmath{https://zbmath.org/?q=an:1111.16042}
\elib{http://elibrary.ru/item.asp?id=13446763}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 2
\pages 190--201
\crossref{https://doi.org/10.1023/B:MATN.0000015035.96781.1c}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000220006100020}


Linking options:
  • http://mi.mathnet.ru/eng/mz24
  • https://doi.org/10.4213/mzm24
  • http://mi.mathnet.ru/eng/mz/v75/i2/p208

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:177
    Full text:72
    References:23
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019