RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1993, Volume 54, Issue 3, Pages 123–140 (Mi mz2410)  

This article is cited in 12 scientific papers (total in 12 papers)

Smoothing of uniformly continuous mappings in $L_p$ spaces

I. G. Tsar'kov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Full text: PDF file (1273 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 1993, 54:3, 957–967

Bibliographic databases:

UDC: 517
Received: 19.02.1993

Citation: I. G. Tsar'kov, “Smoothing of uniformly continuous mappings in $L_p$ spaces”, Mat. Zametki, 54:3 (1993), 123–140; Math. Notes, 54:3 (1993), 957–967

Citation in format AMSBIB
\Bibitem{Tsa93}
\by I.~G.~Tsar'kov
\paper Smoothing of uniformly continuous mappings in $L_p$ spaces
\jour Mat. Zametki
\yr 1993
\vol 54
\issue 3
\pages 123--140
\mathnet{http://mi.mathnet.ru/mz2410}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1248290}
\zmath{https://zbmath.org/?q=an:0821.46037}
\transl
\jour Math. Notes
\yr 1993
\vol 54
\issue 3
\pages 957--967
\crossref{https://doi.org/10.1007/BF01209562}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1993NL76800011}


Linking options:
  • http://mi.mathnet.ru/eng/mz2410
  • http://mi.mathnet.ru/eng/mz/v54/i3/p123

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. G. Tsar'kov, “Some topics on the continuation and smoothing of vector functions”, Math. Notes, 58:6 (1995), 1327–1335  mathnet  crossref  mathscinet  zmath  isi
    2. I. G. Tsar'kov, “On the extension and smoothing of vector-valued functions”, Izv. Math., 59:4 (1995), 847–879  mathnet  crossref  mathscinet  zmath  isi
    3. K. N. Kobanenko, “On the extension of generalized Lipschitz mappings”, Math. Notes, 63:5 (1998), 693–695  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. P. V. Al'brecht, “Differentiable operators of nearly best approximation”, Izv. Math., 63:4 (1999), 631–647  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. Bogachev V.I., “Extensions of H-Lipschitzian mappings with infinite-dimensional range”, Infinite Dimensional Analysis Quantum Probability and Related Topics, 2:3 (1999), 461–474  crossref  mathscinet  zmath  isi
    6. Bogachev, VI, “Extension of mapping of the Weiner space that are lipschitzian along the Cameron-Martin subspace”, Doklady Akademii Nauk, 370:6 (2000), 727  mathnet  mathscinet  zmath  isi
    7. I. G. Tsar'kov, “Smoothing of Hilbert-valued uniformly continuous maps”, Izv. Math., 69:4 (2005), 149–160  mathnet  crossref  crossref  mathscinet  zmath  elib
    8. I. G. Tsar'kov, “Localization of smooth and smoothing of uniformly continuous mappings”, Proc. Steklov Inst. Math. (Suppl.), 2005no. , suppl. 2, S196–S210  mathnet  mathscinet  zmath  elib
    9. I. G. Tsar'kov, “Local Smoothing of Uniformly Smooth Maps”, Funct. Anal. Appl., 40:3 (2006), 200–206  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    10. S. S. Ajiev, “Hölder analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar’kov’s phenomenon. Part I”, Eurasian Math. J., 5:1 (2014), 7–60  mathnet
    11. S. S. Ajiev, “Hölder analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar'kov's phenomenon. Part II”, Eurasian Math. J., 5:2 (2014), 7–51  mathnet
    12. A. R. Alimov, I. G. Tsar'kov, “Chebyshev centres, Jung constants, and their applications”, Russian Math. Surveys, 74:5 (2019), 775–849  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:201
    Full text:74
    References:28
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020