RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2003, Volume 74, Issue 1, Pages 118–131 (Mi mz243)  

This article is cited in 7 scientific papers (total in 7 papers)

Regularly Increasing Entire Dirichlet Series

P. V. Filevich, M. N. Sheremeta

Ivan Franko National University of L'viv

Abstract: For entire Dirichlet series, we establish conditions on its coefficients and exponents under which the logarithms of the maximal term and of the maximum of the modulus are regularly varying functions of order $\rho\in[1,+\infty)$ and the central exponent is a regularly varying function of order $\rho-1$.

DOI: https://doi.org/10.4213/mzm243

Full text: PDF file (225 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2003, 74:1, 110–122

Bibliographic databases:

UDC: 517.53
Received: 20.06.2001

Citation: P. V. Filevich, M. N. Sheremeta, “Regularly Increasing Entire Dirichlet Series”, Mat. Zametki, 74:1 (2003), 118–131; Math. Notes, 74:1 (2003), 110–122

Citation in format AMSBIB
\Bibitem{FilShe03}
\by P.~V.~Filevich, M.~N.~Sheremeta
\paper Regularly Increasing Entire Dirichlet Series
\jour Mat. Zametki
\yr 2003
\vol 74
\issue 1
\pages 118--131
\mathnet{http://mi.mathnet.ru/mz243}
\crossref{https://doi.org/10.4213/mzm243}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2010683}
\zmath{https://zbmath.org/?q=an:1072.30002}
\transl
\jour Math. Notes
\yr 2003
\vol 74
\issue 1
\pages 110--122
\crossref{https://doi.org/10.1023/A:1025027418525}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000185172900013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0345863638}


Linking options:
  • http://mi.mathnet.ru/eng/mz243
  • https://doi.org/10.4213/mzm243
  • http://mi.mathnet.ru/eng/mz/v74/i1/p118

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. S. Kostenko, “Similarity of Indefinite Sturm–Liouville Operators with Singular Potential to a Self-Adjoint Operator”, Math. Notes, 78:1 (2005), 134–139  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    2. A. S. Kostenko, “Similarity of Some $J$-Nonnegative Operators to Self-Adjoint Operators”, Math. Notes, 80:1 (2006), 131–135  mathnet  crossref  crossref  mathscinet  zmath  zmath  isi  elib  scopus
    3. Wang H., Xu H.-Ya., “The Approximation and Growth Problem of Dirichlet Series of Infinite Order”, J. Comput. Anal. Appl., 16:2 (2014), 251–263  mathscinet  zmath  isi
    4. Hlova T.Ya., Filevych P.V., “Paley Effect For Entire Dirichlet Series”, Ukr. Math. J., 67:6 (2015), 838–852  crossref  mathscinet  zmath  isi  scopus
    5. Ku H.-Ya., Kong Y.-Y., Wang H., “the Approximation Problem of Dirichlet Series With Regular Growth”, J. Comput. Anal. Appl., 23:6 (2017), 1016–1028  mathscinet  isi
    6. Xu H. Kong Y., “The Approximation of Analytic Function Defined By Laplace-Stieltjes Transformations Convergent in the Left Half-Plane”, Houst. J. Math., 43:3 (2017), 783–806  mathscinet  zmath  isi
    7. Xu H.Ya. Liu S.Ya., “The Approximation of Laplace-Stieltjes Transforms With Finite Order”, J. Inequal. Appl., 2017, 164  crossref  mathscinet  isi  scopus  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:315
    Full text:132
    References:45
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020