RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2005, Volume 77, Issue 1, Pages 28–41 (Mi mz2466)  

This article is cited in 7 scientific papers (total in 7 papers)

Cauchy-type problem for an abstract differential equation with fractional derivatives

A. V. Glushak

Voronezh State Technical University

Abstract: The uniform well-posedness of a Cauchy-type problem with two fractional derivatives and bounded operator $A$ is proved. For an unbounded operator $A$ we present a test for the uniform well-posedness of the problem under consideration consistent with the test for the uniform well-posedness of the Cauchy problem for an equation of second order.

DOI: https://doi.org/10.4213/mzm2466

Full text: PDF file (230 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2005, 77:1, 26–38

Bibliographic databases:

UDC: 517.983
Received: 05.07.2002
Revised: 24.02.2004

Citation: A. V. Glushak, “Cauchy-type problem for an abstract differential equation with fractional derivatives”, Mat. Zametki, 77:1 (2005), 28–41; Math. Notes, 77:1 (2005), 26–38

Citation in format AMSBIB
\Bibitem{Glu05}
\by A.~V.~Glushak
\paper Cauchy-type problem for an abstract differential equation with fractional derivatives
\jour Mat. Zametki
\yr 2005
\vol 77
\issue 1
\pages 28--41
\mathnet{http://mi.mathnet.ru/mz2466}
\crossref{https://doi.org/10.4213/mzm2466}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2158695}
\zmath{https://zbmath.org/?q=an:1086.34050}
\elib{https://elibrary.ru/item.asp?id=9140720}
\transl
\jour Math. Notes
\yr 2005
\vol 77
\issue 1
\pages 26--38
\crossref{https://doi.org/10.1007/s11006-005-0003-5}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000227418800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-20144362710}


Linking options:
  • http://mi.mathnet.ru/eng/mz2466
  • https://doi.org/10.4213/mzm2466
  • http://mi.mathnet.ru/eng/mz/v77/i1/p28

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Glushak, “On the Properties of a Cauchy-Type Problem for an Abstract Differential Equation with Fractional Derivatives”, Math. Notes, 82:5 (2007), 596–607  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. A. V. Glushak, “Correctness of Cauchy-type problems for abstract differential equations with fractional derivatives”, Russian Math. (Iz. VUZ), 53:9 (2009), 10–19  mathnet  crossref  mathscinet  zmath
    3. Umarov S., “On Fractional Duhamel's Principle and its Applications”, J. Differ. Equ., 252:10 (2012), 5217–5234  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    4. Furati Kh.M., “A Cauchy-Type Problem with a Sequential Fractional Derivative in the Space of Continuous Functions”, Bound. Value Probl., 2012, 58  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    5. Furati Kh.M., “Bounds on the Solution of a Cauchy-Type Problem Involving a Weighted Sequential Fractional Derivative”, Fract. Calc. Appl. Anal., 16:1, SI (2013), 171–188  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    6. Furati Kh.M., “A Cauchy-Type Problem Involving a Weighted Sequential Derivative in the Space of Integrable Functions”, Comput. Math. Appl., 66:5 (2013), 883–891  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    7. V. V. Katrakhov, S. M. Sitnik, “Metod operatorov preobrazovaniya i kraevye zadachi dlya singulyarnykh ellipticheskikh uravnenii”, Singulyarnye differentsialnye uravneniya, SMFN, 64, no. 2, Rossiiskii universitet druzhby narodov, M., 2018, 211–426  mathnet  crossref
  • Математические заметки Mathematical Notes
    Number of views:
    This page:511
    Full text:225
    References:58
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020