|
Riesz rising sun lemma for several variables and the John–Nirenberg inequality
A. A. Korenovskii Institute of Mathematics, Ecomonics and Mechanics, Odessa State University
Abstract:
We obtain a multidimensional analog of the well-known Riesz rising sun lemma. We prove a more precise version of this lemma for space dimension $d=2$. We use these lemmas to establish an anisotropic analog of the John–Nirenberg inequality for functions of bounded mean oscillation with an exact constant in the exponent. Earlier, this exact constant was only known in the one-dimensional case.
DOI:
https://doi.org/10.4213/mzm2469
Full text:
PDF file (243 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 2005, 77:1, 48–60
Bibliographic databases:
UDC:
517.5 Received: 14.05.2003
Citation:
A. A. Korenovskii, “Riesz rising sun lemma for several variables and the John–Nirenberg inequality”, Mat. Zametki, 77:1 (2005), 53–66; Math. Notes, 77:1 (2005), 48–60
Citation in format AMSBIB
\Bibitem{Kor05}
\by A.~A.~Korenovskii
\paper Riesz rising sun lemma for several variables and the John--Nirenberg inequality
\jour Mat. Zametki
\yr 2005
\vol 77
\issue 1
\pages 53--66
\mathnet{http://mi.mathnet.ru/mz2469}
\crossref{https://doi.org/10.4213/mzm2469}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2158697}
\zmath{https://zbmath.org/?q=an:1094.42021}
\elib{https://elibrary.ru/item.asp?id=9140722}
\transl
\jour Math. Notes
\yr 2005
\vol 77
\issue 1
\pages 48--60
\crossref{https://doi.org/10.1007/s11006-005-0005-3}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000227418800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-20144386258}
Linking options:
http://mi.mathnet.ru/eng/mz2469https://doi.org/10.4213/mzm2469 http://mi.mathnet.ru/eng/mz/v77/i1/p53
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 475 | Full text: | 171 | References: | 37 | First page: | 2 |
|