RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2005, Volume 77, Issue 1, Pages 67–79 (Mi mz2470)  

This article is cited in 9 scientific papers (total in 9 papers)

Cohomology of solvable lie algebras and solvmanifolds

D. V. Millionshchikov

M. V. Lomonosov Moscow State University

Abstract: The cohomology $H^*_{\lambda\omega}(G/\Gamma,\mathbb C)$ of the de Rham complex $\Lambda^*(G/\Gamma)\otimes\mathbb C$ of a compact solvmanifold $G/\Gamma$ with deformed differential $d_{\lambda\omega}=d+\lambda\omega$, where $\omega$ is a closed 1-form, is studied. Such cohomologies naturally arise in Morse–Novikov theory. It is shown that, for any completely solvable Lie group $G$ containing a cocompact lattice $\Gamma\subset G$, the cohomology $H^*_{\lambda\omega}(G/\Gamma,\mathbb C)$ is isomorphic to the cohomology $H^*_{\lambda\omega}(\mathfrak g)$ of the tangent Lie algebra $\mathfrak g$ of the group $G$ with coefficients in the one-dimensional representation $\rho_{\lambda\omega}\colon\mathfrak g\to\mathbb K$ defined by $\rho_{\lambda\omega}(\xi)=\lambda\omega(\xi)$. Moreover, the cohomology $H^*_{\lambda\omega}(G/\Gamma,\mathbb C)$ is nontrivial if and only if $-\lambda[\omega]$ belongs to a finite subset $\widetilde\Omega_{\mathfrak g}$ of $H^1(G/\Gamma,\mathbb C)$ defined in terms of the Lie algebra $\mathfrak g$.

DOI: https://doi.org/10.4213/mzm2470

Full text: PDF file (254 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2005, 77:1, 61–71

Bibliographic databases:

UDC: 515.1
Received: 26.11.2003

Citation: D. V. Millionshchikov, “Cohomology of solvable lie algebras and solvmanifolds”, Mat. Zametki, 77:1 (2005), 67–79; Math. Notes, 77:1 (2005), 61–71

Citation in format AMSBIB
\Bibitem{Mil05}
\by D.~V.~Millionshchikov
\paper Cohomology of solvable lie algebras and solvmanifolds
\jour Mat. Zametki
\yr 2005
\vol 77
\issue 1
\pages 67--79
\mathnet{http://mi.mathnet.ru/mz2470}
\crossref{https://doi.org/10.4213/mzm2470}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2158698}
\zmath{https://zbmath.org/?q=an:1085.17013}
\elib{http://elibrary.ru/item.asp?id=9140723}
\transl
\jour Math. Notes
\yr 2005
\vol 77
\issue 1
\pages 61--71
\crossref{https://doi.org/10.1007/s11006-005-0006-2}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000227418800006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-20144379911}


Linking options:
  • http://mi.mathnet.ru/eng/mz2470
  • https://doi.org/10.4213/mzm2470
  • http://mi.mathnet.ru/eng/mz/v77/i1/p67

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Millionschikov D.V., “Multi-Valued Functionals, One-Forms and Deformed de Rham Complex”, Topology in Molecular Biology, Biological and Medical Physics, Biomedical Engineering, ed. MOnastyrsky M., Springer-Verlag Berlin, 2007, 189–208  crossref  adsnasa  isi
    2. Van Le H., Vanzura J., “Cohomology Theories on Locally Conformal Symplectic Manifolds”, Asian J. Math., 19:1 (2015), 45–82  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    3. Cagliero L., Tirao P., “Total cohomology of solvable Lie algebras and linear deformations”, Trans. Am. Math. Soc., 368:5 (2016), 3341–3358  crossref  mathscinet  zmath  isi  scopus
    4. Angella D., Otiman A., Tardini N., “Cohomologies of Locally Conformally Symplectic Manifolds and Solvmanifolds”, Ann. Glob. Anal. Geom., 53:1 (2018), 67–96  crossref  mathscinet  zmath  isi  scopus  scopus
    5. Andrada A., Origlia M., “Lattices in Almost Abelian Lie Groups With Locally Conformal Kahler Or Symplectic Structures”, Manuscr. Math., 155:3-4 (2018), 389–417  crossref  mathscinet  zmath  isi  scopus  scopus
    6. Otiman A., “Morse-Novikov Cohomology of Locally Conformally Kahler Surfaces”, Math. Z., 289:1-2 (2018), 605–628  crossref  mathscinet  zmath  isi  scopus  scopus
    7. Sawai H., “Examples of Solvmanifolds Without Lck Structures”, Complex Manifolds, 5:1 (2018), 103–110  crossref  mathscinet  zmath  isi  scopus  scopus
    8. Origlia M., “Locally Conformal Symplectic Structures on Lie Algebras of Type i and Their Solvmanifolds”, Forum Math., 31:3 (2019), 563–578  crossref  mathscinet  isi  scopus
    9. Andrada A., Origlia M., “Locally Conformally Kahler Solvmanifolds: a Survey”, Complex Manifolds, 6:1 (2019), 65–87  crossref  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:299
    Full text:122
    References:52
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020