|
This article is cited in 1 scientific paper (total in 1 paper)
On the relationship between differentiability conditions and existence of a strong gradient
G. G. Oniani Akaki Tsereteli State University
Abstract:
It is proved that for any $n\geqslant2$ there exists continuous function $f\colon\mathbb R^n\to\mathbb R$ which is differentiable almost everywhere, but has no strong gradient almost everywhere.
DOI:
https://doi.org/10.4213/mzm2472
Full text:
PDF file (175 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 2005, 77:1, 84–89
Bibliographic databases:
UDC:
517.51 Received: 01.10.2003 Revised: 27.12.2003
Citation:
G. G. Oniani, “On the relationship between differentiability conditions and existence of a strong gradient”, Mat. Zametki, 77:1 (2005), 93–98; Math. Notes, 77:1 (2005), 84–89
Citation in format AMSBIB
\Bibitem{Oni05}
\by G.~G.~Oniani
\paper On the relationship between differentiability conditions and existence of a strong gradient
\jour Mat. Zametki
\yr 2005
\vol 77
\issue 1
\pages 93--98
\mathnet{http://mi.mathnet.ru/mz2472}
\crossref{https://doi.org/10.4213/mzm2472}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2158700}
\zmath{https://zbmath.org/?q=an:1101.26012}
\elib{https://elibrary.ru/item.asp?id=9140725}
\transl
\jour Math. Notes
\yr 2005
\vol 77
\issue 1
\pages 84--89
\crossref{https://doi.org/10.1007/s11006-005-0008-0}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000227418800008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-20144379910}
Linking options:
http://mi.mathnet.ru/eng/mz2472https://doi.org/10.4213/mzm2472 http://mi.mathnet.ru/eng/mz/v77/i1/p93
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Bantsuri L.D. Oniani G.G., “On Differential Properties of Functions of Bounded Variation”, Anal. Math., 38:1 (2012), 1–17
|
Number of views: |
This page: | 196 | Full text: | 72 | References: | 23 | First page: | 1 |
|