|
Perfect subsets of invariant CA-sets
V. G. Kanovei, V. A. Lyubetskii Institute for Information Transmission Problems, Russian Academy of Sciences
Abstract:
The familiar theorem that any $\Sigma^1_2(a)$-set $X$ of real numbers (where $a$ is a fixed real parameter) not containing a perfect kernel necessarily satisfies the condition $X\subseteq\mathbf L[a]$ is extended to a wider class of sets, with countable ordinals allowed as additional parameters in $\Sigma^1_2(a)$-definitions.
DOI:
https://doi.org/10.4213/mzm2496
Full text:
PDF file (179 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 2005, 77:3, 307–310
Bibliographic databases:
UDC:
510.225 Received: 31.10.2003
Citation:
V. G. Kanovei, V. A. Lyubetskii, “Perfect subsets of invariant CA-sets”, Mat. Zametki, 77:3 (2005), 334–338; Math. Notes, 77:3 (2005), 307–310
Citation in format AMSBIB
\Bibitem{KanLyu05}
\by V.~G.~Kanovei, V.~A.~Lyubetskii
\paper Perfect subsets of invariant CA-sets
\jour Mat. Zametki
\yr 2005
\vol 77
\issue 3
\pages 334--338
\mathnet{http://mi.mathnet.ru/mz2496}
\crossref{https://doi.org/10.4213/mzm2496}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2157894}
\zmath{https://zbmath.org/?q=an:1112.03042}
\elib{http://elibrary.ru/item.asp?id=9150075}
\transl
\jour Math. Notes
\yr 2005
\vol 77
\issue 3
\pages 307--310
\crossref{https://doi.org/10.1007/s11006-005-0031-1}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000228965300002}
\elib{http://elibrary.ru/item.asp?id=13497341}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-20244383975}
Linking options:
http://mi.mathnet.ru/eng/mz2496https://doi.org/10.4213/mzm2496 http://mi.mathnet.ru/eng/mz/v77/i3/p334
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 233 | Full text: | 78 | References: | 52 | First page: | 1 |
|