RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2005, Volume 77, Issue 4, Pages 498–508 (Mi mz2508)  

This article is cited in 6 scientific papers (total in 6 papers)

Some aspects of the nontrivial solvability of homogeneous Dirichlet problems for linear equations of arbitrary even order in the disk

V. P. Burskii, E. A. Buryachenko

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences

Abstract: In this paper, we obtain a necessary and sufficient condition for the nontrivial solvability of homogeneous Dirichlet problems in the disk for linear equations of arbitrary even order $2m$ with constant complex coefficients and homogeneous nondegenerate symbol in general position. The cases $m=1,2,3$ are studied separately. For the case $m=2$, we consider examples of real elliptic systems reducible to single equations with constant complex coefficients for which the homogeneous Dirichlet problem in the disk has a countable set of linearly independent polynomial solutions.

DOI: https://doi.org/10.4213/mzm2508

Full text: PDF file (226 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2005, 77:4, 461–470

Bibliographic databases:

UDC: 517.946
Received: 10.01.2000
Revised: 09.02.2004

Citation: V. P. Burskii, E. A. Buryachenko, “Some aspects of the nontrivial solvability of homogeneous Dirichlet problems for linear equations of arbitrary even order in the disk”, Mat. Zametki, 77:4 (2005), 498–508; Math. Notes, 77:4 (2005), 461–470

Citation in format AMSBIB
\Bibitem{BurBur05}
\by V.~P.~Burskii, E.~A.~Buryachenko
\paper Some aspects of the nontrivial solvability of homogeneous Dirichlet problems for linear equations of arbitrary even order in the disk
\jour Mat. Zametki
\yr 2005
\vol 77
\issue 4
\pages 498--508
\mathnet{http://mi.mathnet.ru/mz2508}
\crossref{https://doi.org/10.4213/mzm2508}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2178013}
\zmath{https://zbmath.org/?q=an:1112.35043}
\elib{http://elibrary.ru/item.asp?id=9155800}
\transl
\jour Math. Notes
\yr 2005
\vol 77
\issue 4
\pages 461--470
\crossref{https://doi.org/10.1007/s11006-005-0044-9}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000228965300015}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-20244373176}


Linking options:
  • http://mi.mathnet.ru/eng/mz2508
  • https://doi.org/10.4213/mzm2508
  • http://mi.mathnet.ru/eng/mz/v77/i4/p498

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Buryachenko E.A., “Conditions of nontrivial solvability of the homogeneous Dirichlet problem for equations of any even order in the case of multiple characteristics without slope angles”, Ukrainian Math. J., 62:5 (2010), 676–690  crossref  mathscinet  zmath  isi  scopus  scopus
    2. Render H., “Cauchy, Goursat and Dirichlet Problems for Holomorphic Partial Differential Equations”, Comput. Methods Funct. Theory, 10:2 (2010), 519–554  crossref  mathscinet  zmath  isi
    3. A. O. Babayan, S. O. Abelyan, “Defect Numbers of the Dirichlet Problem for a Properly Elliptic Sixth-Order Equation”, Math. Notes, 104:3 (2018), 339–347  mathnet  crossref  crossref  isi  elib
    4. Baranetskij Ya.O. Ivasiuk I.Ya. Kalenyuk I P. Solomko V A., “The Nonlocal Boundary Problem With Perturbations of Antiperiodicity Conditions For the Eliptic Equation With Constant Coefficients”, Carpathian Math. Publ., 10:2 (2018), 215–234  crossref  mathscinet  isi
    5. Babayan A.H., “On a Dirichlet Problem For One Improperly Elliptic Equation”, Complex Var. Elliptic Equ., 64:5 (2019), 825–837  crossref  mathscinet  zmath  isi  scopus
    6. V. P. Burskii, “Equation–Domain Duality in the Dirichlet Problem for General Differential Equations in the Space $L_2$”, Proc. Steklov Inst. Math., 306 (2019), 33–42  mathnet  crossref  crossref  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:315
    Full text:117
    References:40
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020