RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2005, Volume 77, Issue 4, Pages 566–583 (Mi mz2518)  

This article is cited in 3 scientific papers (total in 3 papers)

Klein polyhedra for three extremal cubic forms

V. I. Parusnikov

M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences

Abstract: Davenport and Swinnerton-Dyer found the first 19 extremal ternary cubic forms $g_i$, which have the same meaning as the well-known Markov forms in the binary quadratic case. Bryuno and Parusnikov recently computed the Klein polyhedra for the forms $g_1-g_4$. They also computed the “convergents” for various matrix generalizations of the continued fractions algorithm for multiple root vectors and studied their position with respect to the Klein polyhedra. In the present paper, we compute the Klein polyhedra for the forms $g_5-g_7$ and the adjoint form $g^*_7$. Their periods and fundamental domains are found and the expansions of the multiple root vectors of these forms by means of the matrix algorithms due to Euler, Jacobi, Poincaré, Brun, Parusnikov, and Bryuno, are computed. The position of the “convergents of the continued fractions” with respect to the Klein polyhedron is used as a measure of quality of the algorithms. Eulers and Poincarés algorithms proved to be the worst ones from this point of view, and the Bryuno one is the best. However, none of the algorithms generalizes all the properties of continued fractions.

DOI: https://doi.org/10.4213/mzm2518

Full text: PDF file (429 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2005, 77:4, 523–538

Bibliographic databases:

UDC: 511.36+514.172.45
Received: 15.01.2002
Revised: 26.11.2004

Citation: V. I. Parusnikov, “Klein polyhedra for three extremal cubic forms”, Mat. Zametki, 77:4 (2005), 566–583; Math. Notes, 77:4 (2005), 523–538

Citation in format AMSBIB
\Bibitem{Par05}
\by V.~I.~Parusnikov
\paper Klein polyhedra for three extremal cubic forms
\jour Mat. Zametki
\yr 2005
\vol 77
\issue 4
\pages 566--583
\mathnet{http://mi.mathnet.ru/mz2518}
\crossref{https://doi.org/10.4213/mzm2518}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2178024}
\zmath{https://zbmath.org/?q=an:1073.11045}
\elib{http://elibrary.ru/item.asp?id=9155808}
\transl
\jour Math. Notes
\yr 2005
\vol 77
\issue 4
\pages 523--538
\crossref{https://doi.org/10.1007/s11006-005-0052-9}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000228965300023}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-20244363797}


Linking options:
  • http://mi.mathnet.ru/eng/mz2518
  • https://doi.org/10.4213/mzm2518
  • http://mi.mathnet.ru/eng/mz/v77/i4/p566

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. D. Bruno, “Structure of the best diophantine approximations and multidimensional generalizations of the continued fraction”, Chebyshevskii sb., 11:1 (2010), 68–73  mathnet  mathscinet
    2. A. A. Illarionov, “Some properties of three-dimensional Klein polyhedra”, Sb. Math., 206:4 (2015), 510–539  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    3. A. D. Bryuno, “Universalnoe obobschenie algoritma tsepnoi drobi”, Chebyshevskii sb., 16:2 (2015), 35–65  mathnet  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:270
    Full text:114
    References:54
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020