Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2005, Volume 78, Issue 1, Pages 59–65 (Mi mz2562)  

This article is cited in 8 scientific papers (total in 8 papers)

The Markov Brothers Inequality in $L_0$-Space on an Interval

P. Yu. Glazyrina

Ural State University

Abstract: The exact value of the constant in the Markov brothers inequality in $L_0$-space is obtained for algebraic polynomials on an interval.

DOI: https://doi.org/10.4213/mzm2562

Full text: PDF file (190 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2005, 78:1, 53–58

Bibliographic databases:

UDC: 517.518.862
Received: 23.08.2004

Citation: P. Yu. Glazyrina, “The Markov Brothers Inequality in $L_0$-Space on an Interval”, Mat. Zametki, 78:1 (2005), 59–65; Math. Notes, 78:1 (2005), 53–58

Citation in format AMSBIB
\Bibitem{Gla05}
\by P.~Yu.~Glazyrina
\paper The Markov Brothers Inequality in $L_0$-Space on an Interval
\jour Mat. Zametki
\yr 2005
\vol 78
\issue 1
\pages 59--65
\mathnet{http://mi.mathnet.ru/mz2562}
\crossref{https://doi.org/10.4213/mzm2562}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2244869}
\zmath{https://zbmath.org/?q=an:1088.26008}
\elib{https://elibrary.ru/item.asp?id=9155855}
\transl
\jour Math. Notes
\yr 2005
\vol 78
\issue 1
\pages 53--58
\crossref{https://doi.org/10.1007/s11006-005-0098-8}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000231924500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-23944522636}


Linking options:
  • http://mi.mathnet.ru/eng/mz2562
  • https://doi.org/10.4213/mzm2562
  • http://mi.mathnet.ru/eng/mz/v78/i1/p59

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. P. Yu. Glazyrina, “The Sharp Markov–Nikolskii Inequality for Algebraic Polynomials in the Spaces $L_q$ and $L_0$ on a Closed Interval”, Math. Notes, 84:1 (2008), 3–21  mathnet  crossref  crossref  mathscinet  isi
    2. Arestov V.V., “Algebraic polynomials least deviating from zero in measure on a segment”, Ukrainian Math. J., 62:3 (2010), 331–342  crossref  zmath  isi  elib  scopus
    3. I. E. Simonov, “Tochnoe neravenstvo tipa bratev Markovykh v prostranstvakh $L_p$, $L_1$ na otrezke”, Tr. IMM UrO RAN, 17, no. 3, 2011, 282–290  mathnet  elib
    4. M. R. Gabdullin, “Otsenka srednego geometricheskogo proizvodnoi mnogochlena cherez ego ravnomernuyu normu na otrezke”, Tr. IMM UrO RAN, 18, no. 4, 2012, 153–161  mathnet  elib
    5. V. V. Arestov, M. V. Deikalova, “Nikol'skii inequality for algebraic polynomials on a multidimensional Euclidean sphere”, Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 9–23  mathnet  crossref  mathscinet  isi  elib
    6. Arestov V. Deikalova M., “Nikol'Skii Inequality Between the Uniform Norm and l-Q-Norm With Ultraspherical Weight of Algebraic Polynomials on An Interval”, Comput. Methods Funct. Theory, 15:4, SI (2015), 689–708  crossref  mathscinet  zmath  isi  elib  scopus
    7. Arestov V. Deikalova M., “Nikol'skii inequality between the uniform norm and L q -norm with Jacobi weight of algebraic polynomials on an interval”, Anal. Math., 42:2 (2016), 91–120  crossref  mathscinet  zmath  isi  elib  scopus
    8. Erdelyi T., “Arestov'S Theorems on Bernstein'S Inequality”, J. Approx. Theory, 250 (2020), UNSP 105323  crossref  mathscinet  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:455
    Full text:191
    References:40
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021