RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2005, Volume 78, Issue 2, Pages 299–307 (Mi mz2575)  

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotic Expansion of Eigenvalues of the Laplace Operator in Domains with Singularly Perturbed Boundary

M. I. Cherdantsev

Ufa State Aviation Technical University

Abstract: In this paper, we consider eigenvalue problems for the Laplace operator in three-dimensional domains with singularly perturbed boundary. Perturbations are generated by a complementary Dirichlet boundary condition on a small nonclosed surface inside the domain. The convergence and the asymptotic behavior of simple eigenvalues of the problem are considered.

DOI: https://doi.org/10.4213/mzm2575

Full text: PDF file (192 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2005, 78:2, 270–278

Bibliographic databases:

UDC: 571.958
Received: 24.08.2004
Revised: 27.12.2004

Citation: M. I. Cherdantsev, “Asymptotic Expansion of Eigenvalues of the Laplace Operator in Domains with Singularly Perturbed Boundary”, Mat. Zametki, 78:2 (2005), 299–307; Math. Notes, 78:2 (2005), 270–278

Citation in format AMSBIB
\Bibitem{Che05}
\by M.~I.~Cherdantsev
\paper Asymptotic Expansion of Eigenvalues of the Laplace Operator in Domains with Singularly Perturbed Boundary
\jour Mat. Zametki
\yr 2005
\vol 78
\issue 2
\pages 299--307
\mathnet{http://mi.mathnet.ru/mz2575}
\crossref{https://doi.org/10.4213/mzm2575}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2245050}
\zmath{https://zbmath.org/?q=an:1106.35041}
\elib{https://elibrary.ru/item.asp?id=9155883}
\transl
\jour Math. Notes
\yr 2005
\vol 78
\issue 2
\pages 270--278
\crossref{https://doi.org/10.1007/s11006-005-0125-9}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000231924500033}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-23944511986}


Linking options:
  • http://mi.mathnet.ru/eng/mz2575
  • https://doi.org/10.4213/mzm2575
  • http://mi.mathnet.ru/eng/mz/v78/i2/p299

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Chechkin G.A., Koroleva Yu.O., Meidell A., Persson L.-E., “On the Friedrichs inequality in a domain perforated aperiodically along the boundary. Homogenization procedure. Asymptotics for parabolic problems”, Russ. J. Math. Phys., 16:1 (2009), 1–16  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:341
    Full text:127
    References:41
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020