RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2005, Volume 78, Issue 2, Pages 292–298 (Mi mz2578)  

This article is cited in 2 scientific papers (total in 2 papers)

Elementarity and Dimensions

K. P. Hart

Delft University of Technology

Abstract: An alternative proof of Fedorchuk's recent result that $\dim X\le\operatorname{Dg}X$ for compact Hausdorff spaces X is given. The problem is reduced to the metric case by using the Lowenheim–Skolem theorem.

DOI: https://doi.org/10.4213/mzm2578

Full text: PDF file (190 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2005, 78:2, 264–269

Bibliographic databases:

UDC: 517.5
Received: 01.08.2003

Citation: K. P. Hart, “Elementarity and Dimensions”, Mat. Zametki, 78:2 (2005), 292–298; Math. Notes, 78:2 (2005), 264–269

Citation in format AMSBIB
\Bibitem{Har05}
\by K.~P.~Hart
\paper Elementarity and Dimensions
\jour Mat. Zametki
\yr 2005
\vol 78
\issue 2
\pages 292--298
\mathnet{http://mi.mathnet.ru/mz2578}
\crossref{https://doi.org/10.4213/mzm2578}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2245049}
\zmath{https://zbmath.org/?q=an:1086.54022}
\elib{http://elibrary.ru/item.asp?id=9155882}
\transl
\jour Math. Notes
\yr 2005
\vol 78
\issue 2
\pages 264--269
\crossref{https://doi.org/10.1007/s11006-005-0124-x}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000231924500032}
\elib{http://elibrary.ru/item.asp?id=14182201}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-23944476446}


Linking options:
  • http://mi.mathnet.ru/eng/mz2578
  • https://doi.org/10.4213/mzm2578
  • http://mi.mathnet.ru/eng/mz/v78/i2/p292

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bankston P., “Defining Topological Properties via Interactive Mapping Classes”, Topology Proceedings, Vol 34, Topology Proceedings, 34, Auburn Univ, 2009, 39–45  mathscinet  zmath  isi
    2. Stadnicki W., “The Dimension of Hyperspaces of Non-Metrizable Continua”, Colloq. Math., 128:1 (2012), 101–107  crossref  mathscinet  zmath  isi  elib  scopus  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:234
    Full text:104
    References:86
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020