Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2005, Volume 78, Issue 3, Pages 413–427 (Mi mz2598)  

This article is cited in 3 scientific papers (total in 3 papers)

Corank 1 Singularities of Stable Smooth Maps and Special Tangent Hyperplanes to a Space Curve

V. D. Sedykh

Gubkin Russian State University of Oil and Gas

Abstract: Let $\gamma$ be a smooth generic curve in $\mathbb RP^3$. Denote by $C$ the number of its flattening points, and by $T$ the number of planes tangent to $\gamma$ at three distinct points. Consider the osculating planes to $\gamma$ at the flattening points. Let $N$ denote the total number of points where $\gamma$ intersects these osculating plane transversally. Then $T\equiv[N+\theta(\gamma)C]/2\pmod2$, where $\theta(\gamma)$ is the number of noncontractible components of $\gamma$. This congruence generalizes the well-known Freedman theorem, which states that if a smooth connected closed generic curve in $\mathbb R^3$ has no flattening points, then the number of its triple tangent planes is even. We also give multidimensional analogs of this formula and show that these results follow from certain general facts about the topology of codimension 1 singularities of stable maps between manifolds having the same dimension.

DOI: https://doi.org/10.4213/mzm2598

Full text: PDF file (257 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2005, 78:3, 378–390

Bibliographic databases:

UDC: 515.164.15+514.755.24
Received: 21.10.2003
Revised: 08.02.2005

Citation: V. D. Sedykh, “Corank 1 Singularities of Stable Smooth Maps and Special Tangent Hyperplanes to a Space Curve”, Mat. Zametki, 78:3 (2005), 413–427; Math. Notes, 78:3 (2005), 378–390

Citation in format AMSBIB
\Bibitem{Sed05}
\by V.~D.~Sedykh
\paper Corank 1 Singularities of Stable Smooth Maps and Special Tangent Hyperplanes to a Space Curve
\jour Mat. Zametki
\yr 2005
\vol 78
\issue 3
\pages 413--427
\mathnet{http://mi.mathnet.ru/mz2598}
\crossref{https://doi.org/10.4213/mzm2598}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2227514}
\zmath{https://zbmath.org/?q=an:1112.14031}
\elib{https://elibrary.ru/item.asp?id=9173113}
\transl
\jour Math. Notes
\yr 2005
\vol 78
\issue 3
\pages 378--390
\crossref{https://doi.org/10.1007/s11006-005-0137-5}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000233144200009}
\elib{https://elibrary.ru/item.asp?id=13474029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27144517427}


Linking options:
  • http://mi.mathnet.ru/eng/mz2598
  • https://doi.org/10.4213/mzm2598
  • http://mi.mathnet.ru/eng/mz/v78/i3/p413

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. D. Sedykh, “On the Coexistence of Corank 1 Multisingularities of a Stable Smooth Mapping of Equidimensional Manifolds”, Proc. Steklov Inst. Math., 258 (2007), 194–217  mathnet  crossref  mathscinet  zmath  elib  elib
    2. V. D. Sedykh, “The Topology of Adjacencies of Type $A$ and $D$ Lagrangian Singularities”, Funct. Anal. Appl., 48:4 (2014), 304–308  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. V. D. Sedykh, “On the topology of stable Lagrangian maps with singularities of types $A$ and $D$”, Izv. Math., 79:3 (2015), 581–622  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:288
    Full text:135
    References:43
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021