RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2004, Volume 75, Issue 2, Pages 173–181 (Mi mz26)  

This article is cited in 9 scientific papers (total in 9 papers)

On the Multiplier Space Generated by the Rademacher System

S. V. Astashkin

Samara State University

Abstract: In this paper, we consider the space of multipliers of symmetric spaces with respect to the Rademacher systems. We obtain sufficient conditions under which the space in question coincides with the space $L_\infty$ (with equivalence of norms). These conditions are stated in terms of operator interpolation theory and are essentially weaker than the conditions for the solution of this problem recently obtained by other authors.

DOI: https://doi.org/10.4213/mzm26

Full text: PDF file (215 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2004, 75:2, 158–165

Bibliographic databases:

UDC: 517.5+517.982
Received: 05.07.2002

Citation: S. V. Astashkin, “On the Multiplier Space Generated by the Rademacher System”, Mat. Zametki, 75:2 (2004), 173–181; Math. Notes, 75:2 (2004), 158–165

Citation in format AMSBIB
\Bibitem{Ast04}
\by S.~V.~Astashkin
\paper On the Multiplier Space Generated by the Rademacher System
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 2
\pages 173--181
\mathnet{http://mi.mathnet.ru/mz26}
\crossref{https://doi.org/10.4213/mzm26}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2054550}
\zmath{https://zbmath.org/?q=an:1115.46024}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 2
\pages 158--165
\crossref{https://doi.org/10.1023/B:MATN.0000015032.65257.2a}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000220006100017}


Linking options:
  • http://mi.mathnet.ru/eng/mz26
  • https://doi.org/10.4213/mzm26
  • http://mi.mathnet.ru/eng/mz/v75/i2/p173

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. V. Astashkin, “Extrapolation functors on a family of scales generated by the real interpolation method”, Siberian Math. J., 46:2 (2005), 205–225  mathnet  crossref  mathscinet  zmath  isi  elib
    2. Astashkin S. V., Curbera G. P., “Symmetric kernel of Rademacher multiplicator spaces”, J. Funct. Anal., 226:1 (2005), 173–192  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    3. Astashkin S. V., Curbera G. P., “Rademacher multiplicator spaces equal to L-infinity”, Proc. Amer. Math. Soc., 136:10 (2008), 3493–3501  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    4. S. V. Astashkin, “Rademacher functions in symmetric spaces”, Journal of Mathematical Sciences, 169:6 (2010), 725–886  mathnet  crossref  mathscinet  zmath  elib
    5. Astashkin S. V., Curbera G. P., “Rearrangement invariance of Rademacher multiplicator spaces”, J. Funct. Anal., 256:12 (2009), 4071–4094  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    6. A. I. Novikova, “Indeksy Banakha–Saksa dlya podprostranstv Rademakhera”, Vestn. SamGU. Estestvennonauchn. ser., 2009, no. 4(70), 44–51  mathnet
    7. Curbera G.P., “How Summable Are Rademacher Series?”, Vector Measures, Integration and Related Topics, Operator Theory Advances and Applications, 201, eds. Curbera G., Mockenhaupt G., Ricker W., Birkhauser Verlag Ag, 2010, 135–148  mathscinet  zmath  isi
    8. Astashkin S.V., Curbera G.P., “A Weighted Khintchine Inequality”, Rev. Mat. Iberoam., 30:1 (2014), 237–246  crossref  mathscinet  zmath  isi  scopus  scopus
    9. Astashkin S.V., Curbera G.P., “Local Khintchine Inequality in Rearrangement Invariant Spaces”, Ann. Mat. Pura Appl., 194:3 (2015), 619–643  crossref  mathscinet  zmath  isi  scopus  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:227
    Full text:86
    References:29
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020