RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2005, Volume 78, Issue 4, Pages 614–618 (Mi mz2620)  

This article is cited in 6 scientific papers (total in 6 papers)

Attainability of the Exponent of Exponential Growth in Free Products of Cyclic Groups

A. L. Talambutsa

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: In the paper, the set of exponents of exponential growth (growth exponents) for a finitely generated group with respect to all possible generators of this group is studied. It is proved that the greatest lower bound of this set is attained for the free products of a cyclic group of prime order and a free group of finite rank.

DOI: https://doi.org/10.4213/mzm2620

Full text: PDF file (170 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2005, 78:4, 569–572

Bibliographic databases:

UDC: 512.543.52
Received: 27.12.2004
Revised: 14.02.2005

Citation: A. L. Talambutsa, “Attainability of the Exponent of Exponential Growth in Free Products of Cyclic Groups”, Mat. Zametki, 78:4 (2005), 614–618; Math. Notes, 78:4 (2005), 569–572

Citation in format AMSBIB
\Bibitem{Tal05}
\by A.~L.~Talambutsa
\paper Attainability of the Exponent of Exponential Growth in Free Products of Cyclic Groups
\jour Mat. Zametki
\yr 2005
\vol 78
\issue 4
\pages 614--618
\mathnet{http://mi.mathnet.ru/mz2620}
\crossref{https://doi.org/10.4213/mzm2620}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2226734}
\zmath{https://zbmath.org/?q=an:1108.20032}
\elib{http://elibrary.ru/item.asp?id=9155898}
\transl
\jour Math. Notes
\yr 2005
\vol 78
\issue 4
\pages 569--572
\crossref{https://doi.org/10.1007/s11006-005-0156-2}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000233144200028}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27144440830}


Linking options:
  • http://mi.mathnet.ru/eng/mz2620
  • https://doi.org/10.4213/mzm2620
  • http://mi.mathnet.ru/eng/mz/v78/i4/p614

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Arzhantseva G. N., Lysenok I. G., “A lower bound on the growth of word hyperbolic groups”, J. London Math. Soc. (2), 73:1 (2006), 109–125  crossref  mathscinet  zmath  isi  scopus
    2. A. L. Talambutsa, “Attainability of the Minimal Exponent of Exponential Growth for Some Fuchsian Groups”, Math. Notes, 88:1 (2010), 144–148  mathnet  crossref  crossref  mathscinet  isi
    3. A. L. Talambutsa, “On the attainability of the minimal growth exponent of free products of cyclic groups”, Russian Math. Surveys, 66:1 (2011), 179–180  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. Mann A., “The growth of free products”, J Algebra, 326:1 (2011), 208–217  crossref  mathscinet  zmath  isi  elib  scopus
    5. A. L. Talambutsa, “Attainability of the minimal exponential growth rate for free products of finite cyclic groups”, Proc. Steklov Inst. Math., 274 (2011), 289–302  mathnet  crossref  mathscinet  isi  elib  elib
    6. Sabourau S., “Growth of Quotients of Groups Acting by Isometries on Gromov-Hyperbolic Spaces”, J. Mod. Dyn., 7:2 (2013), 269–290  crossref  mathscinet  zmath  isi  elib  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:257
    Full text:85
    References:24
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019