RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2006, Volume 79, Issue 1, Pages 19–33 (Mi mz2671)  

This article is cited in 3 scientific papers (total in 3 papers)

On Distribution Semigroups with a Singularity at Zero and Bounded Solutions of Differential Inclusions

A. G. Baskakova, K. I. Chernyshovb

a Voronezh State University
b Voronezh State Academy of Forestry Engineering

Abstract: We study distribution semigroups with a singularity at zero and their generators, and establish a relationship between this semigroup and a degenerate semigroup of linear operators on the open right half-line. The study makes an intensive use of spectral theory of linear relations. Applications to the existence problem for bounded solutions of linear differential inclusions are obtained.

DOI: https://doi.org/10.4213/mzm2671

Full text: PDF file (265 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2006, 79:1, 18–30

Bibliographic databases:

UDC: 517.98
Received: 28.05.2004

Citation: A. G. Baskakov, K. I. Chernyshov, “On Distribution Semigroups with a Singularity at Zero and Bounded Solutions of Differential Inclusions”, Mat. Zametki, 79:1 (2006), 19–33; Math. Notes, 79:1 (2006), 18–30

Citation in format AMSBIB
\Bibitem{BasChe06}
\by A.~G.~Baskakov, K.~I.~Chernyshov
\paper On Distribution Semigroups with a Singularity at Zero and Bounded Solutions of Differential Inclusions
\jour Mat. Zametki
\yr 2006
\vol 79
\issue 1
\pages 19--33
\mathnet{http://mi.mathnet.ru/mz2671}
\crossref{https://doi.org/10.4213/mzm2671}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2252132}
\zmath{https://zbmath.org/?q=an:1143.34039}
\elib{http://elibrary.ru/item.asp?id=9210504}
\transl
\jour Math. Notes
\yr 2006
\vol 79
\issue 1
\pages 18--30
\crossref{https://doi.org/10.1007/s11006-006-0002-1}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000235913800002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31844438458}


Linking options:
  • http://mi.mathnet.ru/eng/mz2671
  • https://doi.org/10.4213/mzm2671
  • http://mi.mathnet.ru/eng/mz/v79/i1/p19

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Pechkurov, “Bisectorial operator pencils and the problem of bounded solutions”, Russian Math. (Iz. VUZ), 56:3 (2012), 26–35  mathnet  crossref  mathscinet
    2. A. V. Pechkurov, “An Example in the Theory of Bisectorial Operators”, Math. Notes, 97:2 (2015), 243–248  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. Velinov D., Kostic M., Pilipovic S., “Degenerate C-Distribution Cosine Functions and Degenerate C-Ultradistribution Cosine Functions in Locally Convex Spaces”, Filomat, 31:11, SI (2017), 3075–3089  crossref  mathscinet  isi  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:369
    Full text:125
    References:26
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020