RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2006, Volume 79, Issue 1, Pages 95–101 (Mi mz2677)  

This article is cited in 1 scientific paper (total in 1 paper)

Conjugate Points on a Geodesic with Random Curvature

V. G. Lamburt

M. V. Lomonosov Moscow State University

Abstract: We study conjugate points on a renewable geodesic on which the curvature is a random process. We construct the upper bound for the mean distance between neighboring conjugate points.

DOI: https://doi.org/10.4213/mzm2677

Full text: PDF file (167 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2006, 79:1, 86–91

Bibliographic databases:

UDC: 514.74
Received: 28.07.2003
Revised: 05.04.2005

Citation: V. G. Lamburt, “Conjugate Points on a Geodesic with Random Curvature”, Mat. Zametki, 79:1 (2006), 95–101; Math. Notes, 79:1 (2006), 86–91

Citation in format AMSBIB
\Bibitem{Lam06}
\by V.~G.~Lamburt
\paper Conjugate Points on a Geodesic with Random Curvature
\jour Mat. Zametki
\yr 2006
\vol 79
\issue 1
\pages 95--101
\mathnet{http://mi.mathnet.ru/mz2677}
\crossref{https://doi.org/10.4213/mzm2677}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2252137}
\zmath{https://zbmath.org/?q=an:1138.58010}
\elib{http://elibrary.ru/item.asp?id=9210509}
\transl
\jour Math. Notes
\yr 2006
\vol 79
\issue 1
\pages 86--91
\crossref{https://doi.org/10.1007/s11006-006-0007-9}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000235913800007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31944442759}


Linking options:
  • http://mi.mathnet.ru/eng/mz2677
  • https://doi.org/10.4213/mzm2677
  • http://mi.mathnet.ru/eng/mz/v79/i1/p95

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Tutubalin V.N., “Markov Chains, Products of Random Matrices, and the Main Problem of Modern Eschatology”, Markov Process. Relat. Fields, 18:2 (2012), 341–353  mathscinet  zmath  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:202
    Full text:101
    References:30
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020