RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2006, Volume 79, Issue 1, Pages 120–126 (Mi mz2680)  

This article is cited in 2 scientific papers (total in 2 papers)

Equivalence of Two Sets of Transition Points Corresponding to Solutions with Interior Transition Layers

Ni Ming Kanga, A. B. Vasil'evab, M. G. Dmitrievc

a East China Normal University
b M. V. Lomonosov Moscow State University
c Russian State Social University

Abstract: We establish the equivalence of two sets of transition points corresponding to solutions of singularly perturbed boundary-value problems with interior boundary layers. The first set appears in the formalism for constructing the asymptotics of the solution of a boundary-value problem and the second, in the direct scheme formalism for constructing the asymptotics of the solution of a variational problem.

DOI: https://doi.org/10.4213/mzm2680

Full text: PDF file (159 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2006, 79:1, 109–115

Bibliographic databases:

UDC: 517.97
Received: 16.05.2003
Revised: 15.11.2004

Citation: Ni Ming Kang, A. B. Vasil'eva, M. G. Dmitriev, “Equivalence of Two Sets of Transition Points Corresponding to Solutions with Interior Transition Layers”, Mat. Zametki, 79:1 (2006), 120–126; Math. Notes, 79:1 (2006), 109–115

Citation in format AMSBIB
\Bibitem{NiVasDmi06}
\by Ni Ming Kang, A.~B.~Vasil'eva, M.~G.~Dmitriev
\paper Equivalence of Two Sets of Transition Points Corresponding to Solutions with Interior Transition Layers
\jour Mat. Zametki
\yr 2006
\vol 79
\issue 1
\pages 120--126
\mathnet{http://mi.mathnet.ru/mz2680}
\crossref{https://doi.org/10.4213/mzm2680}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2252140}
\zmath{https://zbmath.org/?q=an:05242156}
\elib{http://elibrary.ru/item.asp?id=9210512}
\transl
\jour Math. Notes
\yr 2006
\vol 79
\issue 1
\pages 109--115
\crossref{https://doi.org/10.1007/s11006-006-0010-1}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000235913800010}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31844454790}


Linking options:
  • http://mi.mathnet.ru/eng/mz2680
  • https://doi.org/10.4213/mzm2680
  • http://mi.mathnet.ru/eng/mz/v79/i1/p120

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Ni Min' Kan', M. G. Dmitriev, “Steplike contrast structure in an elementary optimal control problem”, Comput. Math. Math. Phys., 50:8 (2010), 1312–1323  mathnet  crossref  mathscinet  adsnasa  isi
    2. Sharma K.K., Rai P., Patidar K.C., “A Review on Singularly Perturbed Differential Equations with Turning Points and Interior Layers”, Appl. Math. Comput., 219:22 (2013), 10575–10609  crossref  mathscinet  zmath  isi  elib  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:328
    Full text:135
    References:69
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020