|
This article is cited in 21 scientific papers (total in 21 papers)
Jackson-Type Inequalities and Widths of Function Classes in $L_2$
S. B. Vakarchuk Ukrainian Academy of Customs
Abstract:
The sharp Jackson-type inequalities obtained by Taikov in the space $L_2$ and containing the best approximation and the modulus of continuity of first order are generalized to moduli of continuity of $k$th order $(k=2,3,…)$. We also obtain exact values of the $n$-widths of the function classes $F(k,r,\Phi)$ and $\mathcal{F}_k^r (h)$, which are a generalization of the classes $F(1,r,\Phi)$ and $\mathcal{F}^r_1(h)$ studied by Taikov.
Keywords:
Jackson-type inequalities, width of function classes, modulus of continuity of $k$th order, periodic function, Bernstein, Kolmogorov, Gelfand $n$-widths
DOI:
https://doi.org/10.4213/mzm2774
Full text:
PDF file (432 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 2006, 80:1, 11–18
Bibliographic databases:
UDC:
517.5 Received: 09.03.2005 Revised: 25.12.2005
Citation:
S. B. Vakarchuk, “Jackson-Type Inequalities and Widths of Function Classes in $L_2$”, Mat. Zametki, 80:1 (2006), 11–19; Math. Notes, 80:1 (2006), 11–18
Citation in format AMSBIB
\Bibitem{Vak06}
\by S.~B.~Vakarchuk
\paper Jackson-Type Inequalities and Widths of Function Classes in~$L_2$
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 1
\pages 11--19
\mathnet{http://mi.mathnet.ru/mz2774}
\crossref{https://doi.org/10.4213/mzm2774}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2280732}
\zmath{https://zbmath.org/?q=an:1114.41007}
\elib{https://elibrary.ru/item.asp?id=9281586}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 1
\pages 11--18
\crossref{https://doi.org/10.1007/s11006-006-0102-y}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000240278000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747501825}
Linking options:
http://mi.mathnet.ru/eng/mz2774https://doi.org/10.4213/mzm2774 http://mi.mathnet.ru/eng/mz/v80/i1/p11
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Shabozov M.Sh., Akobirshoev M.O., “On exact values of quasiwidths for some classes of differentiable periodic functions of two variables”, Ukrainian Math. J., 61:6 (2009), 1013–1024
-
S. B. Vakarchuk, V. I. Zabutnaya, “A Sharp Inequality of Jackson–Stechkin type in $L_2$ and the Widths of Functional Classes”, Math. Notes, 86:3 (2009), 306–313
-
M. Sh. Shabozov, “Widths of Classes of Periodic Differentiable Functions in the Space $L_{2}[0,2\pi]$”, Math. Notes, 87:4 (2010), 575–581
-
Shabozov M.Sh., Yusupov G.A., “Inequalities between the best approximations and homogenizations of moduli of continuity in the space $L_2$”, Dokl. Math., 82:3 (2010), 892–895
-
M. Sh. Shabozov, G. A. Yusupov, “Best Polynomial Approximations in $L_2$ of Classes of $2\pi$-Periodic Functions and Exact Values of Their Widths”, Math. Notes, 90:5 (2011), 748–757
-
Li J. Liu Y.-p. Su Ch.-M., “The Jackson Inequality and Widths of Function Classes in l-2([0,1], X(2V+1))”, J. Complex., 28:5-6 (2012), 582–596
-
Shabozov M.Sh. Yusupov G.A., “Widths of Certain Classes of Periodic Functions in l-2”, J. Approx. Theory, 164:7 (2012), 869–878
-
Shabozov M.Sh., “Exact Jackson-Stechkin-Type Inequalities for 2 Pi-Periodic Functions in (2) and Widths of Some Classes of Functions”, Ukr. Math. J., 63:10 (2012), 1633–1639
-
Yusupov G.A., “Tochnye neravenstva tipa dzheksona-stechkina i poperechniki funktsionalnykh klassov v $l_{2}$”, Izvestiya tulskogo gosudarstvennogo universiteta. estestvennye nauki, 2012, no. 2, 124–135
-
M. R. Langarshoev, “Tochnye neravenstva tipa Dzheksona–Stechkina i znacheniya poperechnikov nekotorykh klassov funktsii v prostranstve $L_{2}$”, Model. i analiz inform. sistem, 20:5 (2013), 90–105
-
G. A. Yusupov, “Tochnye znacheniya poperechnikov nekotorykh klassov funktsii iz $L_2$ i minimizatsiya konstant v neravenstvakh tipa Dzheksona–Stechkina”, Model. i analiz inform. sistem, 20:5 (2013), 106–116
-
Shabozov M.Sh. Vakarchuk S.B. Zabutnaya V.I., “Sharp Jackson-Stechkin Type Inequalities for Periodic Functions in l-2 and Widths of Function Classes”, Dokl. Math., 88:1 (2013), 478–481
-
S. B. Vakarchuk, “Mean Approximation of Functions on the Real Axis by Algebraic Polynomials with Chebyshev–Hermite Weight and Widths of Function Classes”, Math. Notes, 95:5 (2014), 599–614
-
M. R. Langarshoev, “Sharp inequality of Jackson–Stechkin type and widths of functional classes in the space $L_2$”, Eurasian Math. J., 5:1 (2014), 122–134
-
S. B. Vakarchuk, “Best Mean-Square Approximations by Entire Functions of Exponential Type and Mean $\nu$-Widths of Classes of Functions on the Line”, Math. Notes, 96:6 (2014), 878–896
-
Vakarchuk S.B. Shvachko A.V., “On the Best Approximation in the Mean By Algebraic Polynomials With Weight and the Exact Values of Widths For the Classes of Functions”, Ukr. Math. J., 65:12 (2014), 1774–1792
-
Shabozov M.Sh. Palavonov K.K., “Exact Values of Widths of Certain Classes of Periodic Differentiable Functions in the Space l (2)[0, 2 Pi]”, Anal. Math., 41:1-2 (2015), 103–115
-
Vakarchuk S.B., “Jackson-Type Inequalities with Generalized Modulus of Continuity and Exact Values of the n-Widths for the Classes of (?, ?)-Differentiable Functions in L 2. I”, Ukr. Math. J., 68:6 (2016), 823–848
-
Shabozov M.Sh. Yusupov G.A. Temurbekova S.D., J. Approx. Theory, 215 (2017), 145–162
-
S. B. Vakarchuk, “O priblizhenii klassicheskimi ortogonalnymi polinomami s vesom v prostranstvakh $L_{2,\gamma}(a,b)$ i o poperechnikakh funktsionalnykh klassov”, Izv. vuzov. Matem., 2019, no. 12, 37–51
-
M. Sh. Shabozov, M. S. Saidusainov, “Srednekvadraticheskoe priblizhenie funktsii kompleksnogo peremennogo summami Fure po ortogonalnym sistemam”, Tr. IMM UrO RAN, 25, no. 2, 2019, 258–272
|
Number of views: |
This page: | 350 | Full text: | 174 | References: | 33 | First page: | 1 |
|