Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2006, Volume 80, Issue 1, Pages 50–59 (Mi mz2779)  

This article is cited in 10 scientific papers (total in 10 papers)

Everywhere Divergent $\Phi$-Means of Fourier Series

G. A. Karagulian

Institute of Mathematics, National Academy of Sciences of Armenia

Abstract: For a function $f\in L^1({\mathbb T})$, we investigate the sequence $(C,1)$ of mean values $\Phi(|S_k(x,f)-f(x)|)$, where $\Phi (t)\colon [0,+\infty)\to [0,+\nobreak \infty)$, $\Phi (0)=\nobreak 0$, is a continuous increasing function. We prove that if $\Phi $ increases faster than exponentially, then these means can diverge everywhere. Divergence almost everywhere of such means was established earlier.

Keywords: Fourier series, means of Fourier series, the space $L^1({\mathbf T})$

DOI: https://doi.org/10.4213/mzm2779

Full text: PDF file (449 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2006, 80:1, 47–56

Bibliographic databases:

UDC: 517
Received: 28.04.2005
Revised: 07.10.2005

Citation: G. A. Karagulian, “Everywhere Divergent $\Phi$-Means of Fourier Series”, Mat. Zametki, 80:1 (2006), 50–59; Math. Notes, 80:1 (2006), 47–56

Citation in format AMSBIB
\Bibitem{Kar06}
\by G.~A.~Karagulian
\paper Everywhere Divergent
$\Phi$-Means of Fourier Series
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 1
\pages 50--59
\mathnet{http://mi.mathnet.ru/mz2779}
\crossref{https://doi.org/10.4213/mzm2779}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2280737}
\zmath{https://zbmath.org/?q=an:1120.42005}
\elib{https://elibrary.ru/item.asp?id=9281622}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 1
\pages 47--56
\crossref{https://doi.org/10.1007/s11006-006-0107-6}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000240278000007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747515684}


Linking options:
  • http://mi.mathnet.ru/eng/mz2779
  • https://doi.org/10.4213/mzm2779
  • http://mi.mathnet.ru/eng/mz/v80/i1/p50

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Gat G. Goginava U. Karagulyan G., “Almost Everywhere Strong Summability of Marcinkiewicz Means of Double Walsh-Fourier Series”, Anal. Math., 40:4 (2014), 243–266  crossref  mathscinet  zmath  isi  scopus
    2. Goginava U. Gogoladze L. Karagulyan G., “Bmo-Estimation and Almost Everywhere Exponential Summability of Quadratic Partial Sums of Double Fourier Series”, Constr. Approx., 40:1 (2014), 105–120  crossref  mathscinet  zmath  isi  scopus
    3. Gat G. Goginava U., “Almost Everywhere Strong Summability of Double Walsh-Fourier Series”, J. Contemp. Math. Anal.-Armen. Aca., 50:1 (2015), 1–13  crossref  mathscinet  zmath  isi  scopus
    4. Gat G., Goginava U., Karagulyan G., “On Everywhere Divergence of the Strong Phi-Means of Walsh-Fourier Series”, J. Math. Anal. Appl., 421:1 (2015), 206–214  crossref  mathscinet  zmath  isi  scopus
    5. Wilson B., “on Almost Everywhere Convergence of Strong Arithmetic Means of Fourier Series”, Trans. Am. Math. Soc., 367:2 (2015), 1467–1500  crossref  mathscinet  zmath  isi
    6. Goginava U., “Almost Everywhere Strong Summability of Cubic Partial Sums of D-Dimensional Walsh-Fourier Series”, Math. Inequal. Appl., 20:4 (2017), 1051–1066  crossref  mathscinet  zmath  isi  scopus
    7. Goginava U., “Almost Everywhere Strong Summability of Fej,R Means of Rectangular Partial Sums of Two-Dimensional Walsh-Fourier Series”, J. Contemp. Math. Anal.-Armen. Aca., 53:2 (2018), 100–112  crossref  mathscinet  isi
    8. U. Goginava, G. Karagulian, “On Exponential Summability of Rectangular Partial Sums of Double Trigonometric Fourier Series”, Math. Notes, 104:5 (2018), 655–665  mathnet  crossref  crossref  mathscinet  isi  elib
    9. Goginava U., “Almost Everywhere Convergence of Strong Norlund Logarithmic Means of Walsh-Fourier Series”, J. Contemp. Math. Anal.-Armen. Aca., 53:5 (2018), 281–287  crossref  mathscinet  zmath  isi  scopus
    10. Goginava U., “Almost Everywhere Strong C,1,0 Summability of 2-Dimensional Trigonometric Fourier Series”, Indian J. Pure Appl. Math., 51:3 (2020), 1181–1194  crossref  mathscinet  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:376
    Full text:168
    References:59
    First page:2

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021