RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2006, Volume 80, Issue 2, Pages 251–261 (Mi mz2806)  

Thin Leibniz Algebras

B. A. Omirov

Romanovskii Mathematical Institute of the National Academy of Sciences of Uzbekistan

Abstract: In the paper, analogs of $0$-filiform and filiform Leibniz algebras in the infinite-dimensional case are introduced and studied. It is proved that, to classify complex thin Leibniz algebras, it suffices to study some special transformations of bases.

Keywords: potentially nilpotent Leibniz algebra, filiform Leibniz algebra, thin Leibniz algebra, central series, affine variety, Zariski topology

DOI: https://doi.org/10.4213/mzm2806

Full text: PDF file (430 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2006, 80:2, 244–253

Bibliographic databases:

UDC: 512.554.38
Received: 04.04.2005
Revised: 28.01.2006

Citation: B. A. Omirov, “Thin Leibniz Algebras”, Mat. Zametki, 80:2 (2006), 251–261; Math. Notes, 80:2 (2006), 244–253

Citation in format AMSBIB
\Bibitem{Omi06}
\by B.~A.~Omirov
\paper Thin Leibniz Algebras
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 2
\pages 251--261
\mathnet{http://mi.mathnet.ru/mz2806}
\crossref{https://doi.org/10.4213/mzm2806}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2281377}
\zmath{https://zbmath.org/?q=an:1148.17002}
\elib{http://elibrary.ru/item.asp?id=9274851}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 2
\pages 244--253
\crossref{https://doi.org/10.1007/s11006-006-0133-4}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000240278000033}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747488141}


Linking options:
  • http://mi.mathnet.ru/eng/mz2806
  • https://doi.org/10.4213/mzm2806
  • http://mi.mathnet.ru/eng/mz/v80/i2/p251

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:226
    Full text:104
    References:26
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020