RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2003, Volume 74, Issue 6, Pages 896–901 (Mi mz316)  

This article is cited in 4 scientific papers (total in 4 papers)

Algorithmic Complexity of a Problem of Idempotent Convex Geometry

S. N. Sergeev

M. V. Lomonosov Moscow State University

Abstract: Properties of the idempotently convex hull of a two-point set in a free semimodule over the idempotent semiring $R_{\max\min}$ and in a free semimodule over a linearly ordered idempotent semifield are studied. Construction algorithms for this hull are proposed.

DOI: https://doi.org/10.4213/mzm316

Full text: PDF file (198 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2003, 74:6, 848–852

Bibliographic databases:

UDC: 519.7
Received: 15.07.2002
Revised: 13.12.2002

Citation: S. N. Sergeev, “Algorithmic Complexity of a Problem of Idempotent Convex Geometry”, Mat. Zametki, 74:6 (2003), 896–901; Math. Notes, 74:6 (2003), 848–852

Citation in format AMSBIB
\Bibitem{Ser03}
\by S.~N.~Sergeev
\paper Algorithmic Complexity of a Problem of Idempotent Convex Geometry
\jour Mat. Zametki
\yr 2003
\vol 74
\issue 6
\pages 896--901
\mathnet{http://mi.mathnet.ru/mz316}
\crossref{https://doi.org/10.4213/mzm316}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2054008}
\zmath{https://zbmath.org/?q=an:1108.52301}
\transl
\jour Math. Notes
\yr 2003
\vol 74
\issue 6
\pages 848--852
\crossref{https://doi.org/10.1023/B:MATN.0000009021.18823.52}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000187966900029}


Linking options:
  • http://mi.mathnet.ru/eng/mz316
  • https://doi.org/10.4213/mzm316
  • http://mi.mathnet.ru/eng/mz/v74/i6/p896

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Butkovic P., Tam K.P., “On Some Properties of the Image Set of a Max-Linear Mapping”, Tropical and Idempotent Mathematics, Contemporary Mathematics, 495, eds. Litvinov G., Sergeev S., Amer Mathematical Soc, 2009, 115–126  crossref  mathscinet  zmath  isi
    2. Nitica V., Sergeev S., “ON HYPERPLANES AND SEMISPACES IN MAX-MIN CONVEX GEOMETRY”, Kybernetika (Prague), 46:3 (2010), 548–557  mathscinet  zmath  isi
    3. Nitica V. Sergeev S., “An Interval Version of Separation by Semispaces in Max-Min Convexity”, Linear Alg. Appl., 435:7, SI (2011), 1637–1648  crossref  mathscinet  zmath  isi  elib  scopus
    4. Nitica V., Sergeev S., “on the Dimension of Max-Min Convex Sets”, Fuzzy Sets Syst., 271 (2015), 88–101  crossref  mathscinet  zmath  isi  elib  scopus  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:239
    Full text:94
    References:31
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020