|
This article is cited in 4 scientific papers (total in 4 papers)
On the Continuity of the Generalized Nemytskii Operator on Spaces of Differentiable Functions
K. O. Besov Steklov Mathematical Institute, Russian Academy of Sciences
Abstract:
We obtain sufficient conditions for the continuity of the general nonlinear superposition operator (generalized Nemytskii operator) acting from the space $C^m(\overline \Omega)$ of differentiable functions on a bounded domain $\Omega$ to the Lebesgue space $L_p(\Omega)$. The values of operators on a function $u\in C^m(\overline \Omega)$ are locally determined by the values of both the function $u$ itself and all of its partial derivatives up to order $m$ inclusive. In certain particular cases, the sufficient conditions obtained are proved to be necessary as well. The results are illustrated by several examples, and an application to the theory of Sobolev spaces is also given.
DOI:
https://doi.org/10.4213/mzm337
Full text:
PDF file (253 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 2002, 71:2, 154–165
Bibliographic databases:
UDC:
517.988.5 Received: 10.08.2001
Citation:
K. O. Besov, “On the Continuity of the Generalized Nemytskii Operator on Spaces of Differentiable Functions”, Mat. Zametki, 71:2 (2002), 168–181; Math. Notes, 71:2 (2002), 154–165
Citation in format AMSBIB
\Bibitem{Bes02}
\by K.~O.~Besov
\paper On the Continuity of the Generalized Nemytskii Operator on Spaces of Differentiable Functions
\jour Mat. Zametki
\yr 2002
\vol 71
\issue 2
\pages 168--181
\mathnet{http://mi.mathnet.ru/mz337}
\crossref{https://doi.org/10.4213/mzm337}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1900791}
\zmath{https://zbmath.org/?q=an:1026.47050}
\transl
\jour Math. Notes
\yr 2002
\vol 71
\issue 2
\pages 154--165
\crossref{https://doi.org/10.1023/A:1013998928829}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000174101600018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141625135}
Linking options:
http://mi.mathnet.ru/eng/mz337https://doi.org/10.4213/mzm337 http://mi.mathnet.ru/eng/mz/v71/i2/p168
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Besov, KO, “Eigenfunctions of some nonlinear nonlocal operators”, Differential Equations, 38:4 (2002), 510
-
Walczak, J, “Simplified models of nonlinear multipoles in frequency domain”, Przeglad Elektrotechniczny, 85:4 (2009), 227
-
Gulgowski J., “Approximation of Solutions to Second Order Nonlinear Picard Problems with Caratheodory Right-Hand Side”, Cent. Eur. J. Math., 12:1 (2014), 155–166
-
Beldzinski M., Galewski M., Steglinski R., “Solvability of Abstract Semilinear Equations By a Global Diffeomorphism Theorem”, Results Math., 73:3 (2018), UNSP 122
|
Number of views: |
This page: | 661 | Full text: | 194 | References: | 45 | First page: | 3 |
|