|
This article is cited in 1 scientific paper (total in 1 paper)
Conservative Means of Orthogonal Series and the Spaces $L^p[0;1]$, $p\in (1;\infty )$
I. N. Brui Belarusian Commercial University of Management, Baranovichi Branch
Abstract:
Necessary and sufficient conditions for an orthogonal series to be the Fourier series of a function in the space $L^p[0;1]$, $p\in (1;\infty )$, are obtained. In the special case of regular summation methods we recover the classical results of Orlicz and Lomnicki.
DOI:
https://doi.org/10.4213/mzm338
Full text:
PDF file (259 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 2002, 71:2, 166–176
Bibliographic databases:
UDC:
517.518.366 Received: 27.06.2000
Citation:
I. N. Brui, “Conservative Means of Orthogonal Series and the Spaces $L^p[0;1]$, $p\in (1;\infty )$”, Mat. Zametki, 71:2 (2002), 182–193; Math. Notes, 71:2 (2002), 166–176
Citation in format AMSBIB
\Bibitem{Bru02}
\by I.~N.~Brui
\paper Conservative Means of Orthogonal Series and the Spaces $L^p[0;1]$, $p\in (1;\infty )$
\jour Mat. Zametki
\yr 2002
\vol 71
\issue 2
\pages 182--193
\mathnet{http://mi.mathnet.ru/mz338}
\crossref{https://doi.org/10.4213/mzm338}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1900792}
\zmath{https://zbmath.org/?q=an:1038.42028}
\transl
\jour Math. Notes
\yr 2002
\vol 71
\issue 2
\pages 166--176
\crossref{https://doi.org/10.1023/A:1013951012900}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000174101600019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141736944}
Linking options:
http://mi.mathnet.ru/eng/mz338https://doi.org/10.4213/mzm338 http://mi.mathnet.ru/eng/mz/v71/i2/p182
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. G. Krotov, “When is an Orthogonal Series a Fourier Series?”, Math. Notes, 74:1 (2003), 132–135
|
Number of views: |
This page: | 305 | Full text: | 103 | References: | 31 | First page: | 1 |
|