RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2007, Volume 81, Issue 1, Pages 153–156 (Mi mz3529)  

This article is cited in 7 scientific papers (total in 7 papers)

Brief Communications

On the Existence of Entire Solutions to a Class of Semilinear Elliptic Equations on Noncompact Riemann Manifolds

E. A. Mazepa

Volgograd State University

Keywords: elliptic boundary-value problem, comparison principle, entire function, harmonic function, Riemann manifold, stochastic completeness

DOI: https://doi.org/10.4213/mzm3529

Full text: PDF file (280 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2007, 81:1, 135–139

Bibliographic databases:

Received: 12.12.2005

Citation: E. A. Mazepa, “On the Existence of Entire Solutions to a Class of Semilinear Elliptic Equations on Noncompact Riemann Manifolds”, Mat. Zametki, 81:1 (2007), 153–156; Math. Notes, 81:1 (2007), 135–139

Citation in format AMSBIB
\Bibitem{Maz07}
\by E.~A.~Mazepa
\paper On the Existence of Entire Solutions to a Class of Semilinear Elliptic Equations on Noncompact Riemann Manifolds
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 1
\pages 153--156
\mathnet{http://mi.mathnet.ru/mz3529}
\crossref{https://doi.org/10.4213/mzm3529}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2333874}
\zmath{https://zbmath.org/?q=an:1127.58019}
\elib{http://elibrary.ru/item.asp?id=9429675}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 1
\pages 135--139
\crossref{https://doi.org/10.1134/S0001434607010154}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000244695200015}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947544488}


Linking options:
  • http://mi.mathnet.ru/eng/mz3529
  • https://doi.org/10.4213/mzm3529
  • http://mi.mathnet.ru/eng/mz/v81/i1/p153

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Mazepa E.A., “Ob asimptoticheskom povedenii reshenii nekotorykh polulineinykh ellipticheskikh uravnenii na nekompaktnykh rimanovykh mnogoobraziyakh”, Vestn. Volgogradskogo gos. un-ta. Ser. 1. Matematika. Fizika, 2011, no. 1, 41–59  elib
    2. E. A. Mazepa, “The Liouville property and boundary value problems for semilinear elliptic equations on noncompact Riemannian manifolds”, Siberian Math. J., 53:1 (2012), 134–145  mathnet  crossref  mathscinet  isi
    3. Enstedt M., Melgaard M., “Abstract criteria for multiple solutions to nonlinear coupled equations involving magnetic Schrödinger operators”, J. Differential Equations, 253:6 (2012), 1729–1743  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    4. Argaez C., Melgaard M., “Solutions to quasi-relativistic multi-configurative Hartree-Fock equations in quantum chemistry”, Nonlinear Anal., 75:1 (2012), 384–404  crossref  mathscinet  zmath  isi  elib  scopus
    5. E. A. Mazepa, “Approksimativnyi podkhod k postroeniyu reshenii kraevykh zadach na nekompaktnykh rimanovykh mnogoobraziyakh”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2015, no. 5(30), 25–35  mathnet  crossref
    6. E. A. Mazepa, “Polozhitelnye resheniya kvazilineinykh ellipticheskikh neravenstv na rimanovykh proizvedeniyakh”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2015, no. 6(31), 6–16  mathnet  crossref
    7. E. A. Mazepa, “O razreshimosti kraevykh zadach dlya kvazilineinykh ellipticheskikh uravnenii na nekompaktnykh rimanovykh mnogoobraziyakh”, Sib. elektron. matem. izv., 13 (2016), 1026–1034  mathnet  crossref  mathscinet  zmath
  • Математические заметки Mathematical Notes
    Number of views:
    This page:272
    Full text:121
    References:39
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020