RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2007, Volume 81, Issue 2, Pages 163–173 (Mi mz3544)  

Automorphisms of Free Groups and the Mapping Class Groups of Closed Compact Orientable Surfaces

S. I. Adiana, F. Grunevaldb, J. Mennickec, A. L. Talambutsaa

a Steklov Mathematical Institute, Russian Academy of Sciences
b Heinrich-Heine-Universität Düsseldorf
c Bielefeld University

Abstract: Let $N$ be the stabilizer of the word $w=s_1t_1s_1^{-1}t_1^{-1}…s_gt_gs_g^{-1}t_g^{-1}$ in the group of automorphisms $\operatorname{Aut}(F_{2g})$ of the free group with generators $\{s_i,t_i\}_{i=1,…,g}$. The fundamental group $\pi_1(\Sigma_g)$ of a two-dimensional compact orientable closed surface of genus $g$ in generators $\{s_i,t_i\}$ is determined by the relation $w=1$. In the present paper, we find elements $S_i,T_i\in N$ determining the conjugation by the generators $s_i$, $t_i$ in $\operatorname{Aut}(\pi_1(\Sigma_g))$. Along with an element $\beta\in N$, realizing the conjugation by $w$, they generate the kernel of the natural epimorphism of the group $N$ on the mapping class group $M_{g,0}=\operatorname{Aut}(\pi_1(\Sigma_g))/\operatorname{Inn}(\pi_1(\Sigma_g))$. We find the system of defining relations for this kernel in the generators $S_1$, …, $S_g$, $T_1$, …, $T_g$, $\alpha$. In addition, we have found a subgroup in $N$ isomorphic to the braid group $B_g$ on $g$ strings, which, under the abelianizing of the free group $F_{2g}$, is mapped onto the subgroup of the Weyl group for $\operatorname{Sp}(2g,\mathbb{Z})$ consisting of matrices that contain only $0$ and $1$.

Keywords: mapping class group, closed compact orientable surface, fundamental group, automorphism, homeomorphism, generators and defining relations

DOI: https://doi.org/10.4213/mzm3544

Full text: PDF file (495 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2007, 81:2, 147–155

Bibliographic databases:

Document Type: Article
UDC: 512.54
Received: 11.07.2006

Citation: S. I. Adian, F. Grunevald, J. Mennicke, A. L. Talambutsa, “Automorphisms of Free Groups and the Mapping Class Groups of Closed Compact Orientable Surfaces”, Mat. Zametki, 81:2 (2007), 163–173; Math. Notes, 81:2 (2007), 147–155

Citation in format AMSBIB
\Bibitem{AdiGruMen07}
\by S.~I.~Adian, F.~Grunevald, J.~Mennicke, A.~L.~Talambutsa
\paper Automorphisms of Free Groups and the Mapping Class Groups of Closed Compact Orientable Surfaces
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 2
\pages 163--173
\mathnet{http://mi.mathnet.ru/mz3544}
\crossref{https://doi.org/10.4213/mzm3544}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2333876}
\zmath{https://zbmath.org/?q=an:1128.20021}
\elib{http://elibrary.ru/item.asp?id=9448924}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 2
\pages 147--155
\crossref{https://doi.org/10.1134/S0001434607010178}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000244695200017}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947519998}


Linking options:
  • http://mi.mathnet.ru/eng/mz3544
  • https://doi.org/10.4213/mzm3544
  • http://mi.mathnet.ru/eng/mz/v81/i2/p163

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:450
    Full text:87
    References:29
    First page:16

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019