RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2002, Volume 71, Issue 4, Pages 508–521 (Mi mz362)  

This article is cited in 1 scientific paper (total in 1 paper)

A Criterion for Weak Generalized Localization in the Class $L_1$ for Multiple Trigonometric Series from the Viewpoint of Isometric Transformations

I. L. Bloshanskii

Moscow State Pedagogical University

Abstract: In this paper, we study the problem of the variation (if any) of the sets of convergence and divergence everywhere or almost everywhere of a multiple Fourier series (integral) of a function $f\in L_p$, $p\ge 1$, $f(x)=0$, on a set of positive measure $\mathfrak A\subset \mathbb T^N=[-\pi ,\pi )^N$, $N\ge 2$, depending on the rotation of the coordinate system, i.e., depending on the element $\tau \in \mathcal F$, where $\mathcal F$ is the rotation group about the origin in $\mathbb R^N$. This problem has been reduced to the study of the change in the geometry of the sets $\tau ^{-1}({\mathfrak A})\cap \mathbb T^N$ (where $\tau ^{-1}\in \mathcal F$ satisfies $\tau ^{-1}\cdot \tau =1$) and $\mathbb T^N\setminus \operatorname {supp}(f\circ \tau )$ depending on the rotation, i.e., on $\tau \in \mathcal F$. In the present paper, we consider two settings of this problem (depending on the sense in which the Fourier series of the function $f\circ \tau $ is understood) and give (for both cases) possible solutions of the problem in the class $L_1(\mathbb T^N)$, $N\ge 2$.

DOI: https://doi.org/10.4213/mzm362

Full text: PDF file (248 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2002, 71:4, 464–476

Bibliographic databases:

UDC: 517.5
Received: 26.01.2001
Revised: 01.07.2001

Citation: I. L. Bloshanskii, “A Criterion for Weak Generalized Localization in the Class $L_1$ for Multiple Trigonometric Series from the Viewpoint of Isometric Transformations”, Mat. Zametki, 71:4 (2002), 508–521; Math. Notes, 71:4 (2002), 464–476

Citation in format AMSBIB
\Bibitem{Blo02}
\by I.~L.~Bloshanskii
\paper A Criterion for Weak Generalized Localization in the Class $L_1$ for Multiple Trigonometric Series from the Viewpoint of Isometric Transformations
\jour Mat. Zametki
\yr 2002
\vol 71
\issue 4
\pages 508--521
\mathnet{http://mi.mathnet.ru/mz362}
\crossref{https://doi.org/10.4213/mzm362}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1913580}
\zmath{https://zbmath.org/?q=an:1024.42004}
\elib{http://elibrary.ru/item.asp?id=5025294}
\transl
\jour Math. Notes
\yr 2002
\vol 71
\issue 4
\pages 464--476
\crossref{https://doi.org/10.1023/A:1014871529393}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000175483000017}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141736977}


Linking options:
  • http://mi.mathnet.ru/eng/mz362
  • https://doi.org/10.4213/mzm362
  • http://mi.mathnet.ru/eng/mz/v71/i4/p508

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bloshanskii I., “Structural and Geometric Characteristics of Sets of Convergence and Divergence of Multiple Fourier Series of Functions Which Equal Zero on Some Set”, Wavelet Analysis and its Applications (WAA), Vols 1 and 2, eds. Li J., Wickerhauser V., Tang Y., Daugman J., Peng L., Zhao J., World Scientific Publ Co Pte Ltd, 2003, 183–193  crossref  mathscinet  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:184
    Full text:81
    References:31
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019