RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2002, Volume 71, Issue 4, Pages 522–531 (Mi mz363)  

This article is cited in 2 scientific papers (total in 2 papers)

$K$-Functionals and Exact Values of n-Widths of Certain Classes in the Spaces $C(2\pi )$ and $L_1(2\pi )$

S. B. Vakarchuk

Ukrainian Academy of Customs

Abstract: For classes of $2\pi$-periodic functions whose $K$-functionals are majorized by functions satisfying certain constraints, exact values of Kolmogorov, Bernstein, and trigonometric $n$-widths in the spaces $C(2\pi )$ and $L_1(2\pi )$ are obtained. Examples of majorants that satisfy the requirements stated in this paper are given.

DOI: https://doi.org/10.4213/mzm363

Full text: PDF file (199 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2002, 71:4, 477–485

Bibliographic databases:

UDC: 517.5
Received: 07.07.1999
Revised: 27.07.2001

Citation: S. B. Vakarchuk, “$K$-Functionals and Exact Values of n-Widths of Certain Classes in the Spaces $C(2\pi )$ and $L_1(2\pi )$”, Mat. Zametki, 71:4 (2002), 522–531; Math. Notes, 71:4 (2002), 477–485

Citation in format AMSBIB
\Bibitem{Vak02}
\by S.~B.~Vakarchuk
\paper $K$-Functionals and Exact Values of n-Widths of Certain Classes in the Spaces $C(2\pi )$ and $L_1(2\pi )$
\jour Mat. Zametki
\yr 2002
\vol 71
\issue 4
\pages 522--531
\mathnet{http://mi.mathnet.ru/mz363}
\crossref{https://doi.org/10.4213/mzm363}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1913581}
\zmath{https://zbmath.org/?q=an:1021.41017}
\transl
\jour Math. Notes
\yr 2002
\vol 71
\issue 4
\pages 477--485
\crossref{https://doi.org/10.1023/A:1014823613463}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000175483000018}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141848548}


Linking options:
  • http://mi.mathnet.ru/eng/mz363
  • https://doi.org/10.4213/mzm363
  • http://mi.mathnet.ru/eng/mz/v71/i4/p522

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. B. Vakarchuk, “Mean Approximation of Functions on the Real Axis by Algebraic Polynomials with Chebyshev–Hermite Weight and Widths of Function Classes”, Math. Notes, 95:5 (2014), 599–614  mathnet  crossref  crossref  mathscinet  isi  elib
    2. Vakarchuk S.B. Shvachko A.V., “On the Best Approximation in the Mean By Algebraic Polynomials With Weight and the Exact Values of Widths For the Classes of Functions”, Ukr. Math. J., 65:12 (2014), 1774–1792  crossref  mathscinet  zmath  isi  scopus  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:203
    Full text:111
    References:20
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020