RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Подписка
Правила для авторов
Лицензионный договор
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Матем. заметки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Матем. заметки, 1989, том 46, выпуск 6, страницы 94–100 (Mi mz3645)  

Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)

Локальное описание замкнутых подмодулей в специальном модуле целых функций экспоненциального типа

А. Б. Шишкин


Аннотация: Рассматривается задача локального описания, двойственная задаче спектрального синтеза для оператора кратного дифференцирования. Подмодули, допускающие локальное описание, называются обильными. Доказывается эквивалентность условия обильности более простому условию устойчивости замкнутых подмодулей.
Библиогр. 8 назв.

Полный текст: PDF файл (713 kB)

Англоязычная версия:
Mathematical Notes, 1989, 46:6, 952–956

Реферативные базы данных:

Поступило: 13.05.1987

Образец цитирования: А. Б. Шишкин, “Локальное описание замкнутых подмодулей в специальном модуле целых функций экспоненциального типа”, Матем. заметки, 46:6 (1989), 94–100; Math. Notes, 46:6 (1989), 952–956

Цитирование в формате AMSBIB
\RBibitem{Shi89}
\by А.~Б.~Шишкин
\paper Локальное описание замкнутых подмодулей в~специальном
модуле целых функций экспоненциального типа
\jour Матем. заметки
\yr 1989
\vol 46
\issue 6
\pages 94--100
\mathnet{http://mi.mathnet.ru/mz3645}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1051056}
\zmath{https://zbmath.org/?q=an:0701.46037}
\transl
\jour Math. Notes
\yr 1989
\vol 46
\issue 6
\pages 952--956
\crossref{https://doi.org/10.1007/BF01158633}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1989DT64100024}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/mz3645
  • http://mi.mathnet.ru/rus/mz/v46/i6/p94

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. И. Ф. Красичков-Терновский, “Спектральный синтез в комплексной области для дифференциального оператора с постоянными коэффициентами. III. Обильные подмодули”, Матем. сб., 183:6 (1992), 55–86  mathnet  mathscinet  zmath  adsnasa; I. F. Krasichkov-Ternovskii, “Spectral synthesis in a complex domain for a differential operator with constant coefficients. III: Ample submodules”, Russian Acad. Sci. Sb. Math., 76:1 (1993), 165–188  crossref  isi
    2. И. Ф. Красичков-Терновский, “Спектральный синтез в комплексной области для дифференциального оператора с постоянными коэффициентами. II. Метод модулей”, Матем. сб., 183:1 (1992), 3–19  mathnet  mathscinet  zmath  adsnasa; I. F. Krasichkov-Ternovskii, “Spectral synthesis in a complex domain for a differential operator with constant coefficients. II. The module method”, Russian Acad. Sci. Sb. Math., 75:1 (1993), 1–15  crossref  isi
    3. А. Б. Шишкин, “Спектральный синтез для систем дифференциальных операторов с постоянными коэффициентами”, Матем. сб., 194:12 (2003), 123–156  mathnet  crossref  mathscinet  zmath; A. B. Shishkin, “Spectral synthesis for systems of differential operators with constant coefficients”, Sb. Math., 194:12 (2003), 1865–1898  crossref  isi
    4. Т. А. Волковая, А. Б. Шишкин, “Локальное описание целых функций. Подмодули ранга 1”, Владикавк. матем. журн., 16:2 (2014), 14–28  mathnet
  • Математические заметки Mathematical Notes
    Просмотров:
    Эта страница:112
    Полный текст:49
    Первая стр.:1
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020