RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2004, Volume 75, Issue 3, Pages 350–359 (Mi mz37)  

This article is cited in 9 scientific papers (total in 9 papers)

On the Asymptotic Behavior of Distributions of First-Passage Times, II

A. A. Borovkov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: In this paper, the asymptotic behavior of and estimates for the distribution of first-passage times for a random walk with nonzero drift are obtained in the case of passage of zero level (in both directions).

DOI: https://doi.org/10.4213/mzm37

Full text: PDF file (225 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2004, 75:3, 322–330

Bibliographic databases:

UDC: 519.214
Received: 17.05.2002
Revised: 01.04.2003

Citation: A. A. Borovkov, “On the Asymptotic Behavior of Distributions of First-Passage Times, II”, Mat. Zametki, 75:3 (2004), 350–359; Math. Notes, 75:3 (2004), 322–330

Citation in format AMSBIB
\Bibitem{Bor04}
\by A.~A.~Borovkov
\paper On the Asymptotic Behavior of Distributions of First-Passage Times, II
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 3
\pages 350--359
\mathnet{http://mi.mathnet.ru/mz37}
\crossref{https://doi.org/10.4213/mzm37}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2068798}
\zmath{https://zbmath.org/?q=an:1138.60035}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 3
\pages 322--330
\crossref{https://doi.org/10.1023/B:MATN.0000023311.52852.25}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000221289900003}


Linking options:
  • http://mi.mathnet.ru/eng/mz37
  • https://doi.org/10.4213/mzm37
  • http://mi.mathnet.ru/eng/mz/v75/i3/p350

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. A. A. Mogul'skii, B. A. Rogozin, “A Local Theorem for the First Hitting Time of a Fixed Level by a Random Walk”, Siberian Adv. Math., 15:3 (2005), 1–27  mathnet  mathscinet  zmath
    2. A. A. Mogul'skii, “Large deviations of the first passage time for a random walk with semiexponentially distributed jumps”, Siberian Math. J., 47:6 (2006), 1084–1101  mathnet  crossref  mathscinet  zmath  isi
    3. Vatutin V.A., Wachtel V., “Local probabilities for random walks conditioned to stay positive”, Probab. Theory Related Fields, 143:1-2 (2009), 177–217  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    4. Denisov D., Shneer V., “Asymptotics for the First Passage Times of Levy Processes and Random Walks”, J. Appl. Probab., 50:1 (2013), 64–84  crossref  mathscinet  zmath  isi  elib  scopus
    5. Aurzada F., Kramm T., Savov M., “First Passage Times of Levy Processes Over a One-Sided Moving Boundary”, Markov Process. Relat. Fields, 21:1 (2015), 1–38  mathscinet  zmath  isi  elib
    6. Aurzada F., Kramm T., “The First Passage Time Problem Over a Moving Boundary for Asymptotically Stable Lévy Processes”, J. Theor. Probab., 29:3 (2016), 737–760  crossref  mathscinet  zmath  isi  elib  scopus
    7. R. T. Aliev, T. A. Khaniev, “On the Limiting Behavior of the Characteristic Function of the Ergodic Distribution of the Semi-Markov Walk with Two Boundaries”, Math. Notes, 102:4 (2017), 444–454  mathnet  crossref  crossref  mathscinet  isi  elib
    8. Grama I., Le Page E., Peigne M., “Conditioned Limit Theorems For Products of Random Matrices”, Probab. Theory Relat. Field, 168:3-4 (2017), 601–639  crossref  mathscinet  zmath  isi  scopus  scopus
    9. Grama I., Lauvergnat R., Le Page E., “Limit Theorems For Markov Walks Conditioned to Stay Positive Under a Spectral Gap Assumption”, Ann. Probab., 46:4 (2018), 1807–1877  crossref  mathscinet  zmath  isi  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:338
    Full text:121
    References:85
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019