RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2007, Volume 81, Issue 4, Pages 569–585 (Mi mz3700)  

This article is cited in 7 scientific papers (total in 7 papers)

Estimates of the Solutions of Difference-Differential Equations of Neutral Type

A. A. Lesnykh

M. V. Lomonosov Moscow State University

Abstract: In this paper, we study scalar difference-differential equations of neutral type of general form
$$ \sum_{j=0}^m\int_0^hu^{(j)}(t-\theta) d\sigma_j(\theta)=0, \qquad t>h, $$
where the $\sigma_j(\theta)$ are functions of bounded variation. For the solutions of this equation, we obtain the following estimate:
$$ \|u(t)\|_{W_2^m(T,T+h)} \le C T^{q-1}e^{\varkappa T}\|u(t)\|_{W_2^m(0,h)}, $$
where $C$ is a constant independent of $u_0(t)$ and the values of $q$ and $\varkappa$ are determined by the properties of the characteristic determinant of this equation. Earlier, this estimate was proved for equations of less general form. For example, for piecewise constant functions $\sigma_j(\theta)$ or for the case in which the function $\sigma_m(\theta)$ has jumps at both points $\theta=0$ and $\theta=h$. In the present paper, this estimate is obtained under the only condition that $\sigma_m(\theta)$ experiences a jump at the point $\theta=0$; this condition is necessary for the correct solvability of the initial-value problem.

Keywords: difference-differential equation of neutral type, equation with delay, initial-value problem, entire function, Laplace transform, characteristic determinant

DOI: https://doi.org/10.4213/mzm3700

Full text: PDF file (589 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2007, 81:4, 503–517

Bibliographic databases:

UDC: 517.929
Received: 20.11.2006

Citation: A. A. Lesnykh, “Estimates of the Solutions of Difference-Differential Equations of Neutral Type”, Mat. Zametki, 81:4 (2007), 569–585; Math. Notes, 81:4 (2007), 503–517

Citation in format AMSBIB
\Bibitem{Les07}
\by A.~A.~Lesnykh
\paper Estimates of the Solutions of Difference-Differential Equations of Neutral Type
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 4
\pages 569--585
\mathnet{http://mi.mathnet.ru/mz3700}
\crossref{https://doi.org/10.4213/mzm3700}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2352023}
\zmath{https://zbmath.org/?q=an:1139.34057}
\elib{http://elibrary.ru/item.asp?id=9486226}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 4
\pages 503--517
\crossref{https://doi.org/10.1134/S0001434607030285}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000246269000028}
\elib{http://elibrary.ru/item.asp?id=13562044}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248324308}


Linking options:
  • http://mi.mathnet.ru/eng/mz3700
  • https://doi.org/10.4213/mzm3700
  • http://mi.mathnet.ru/eng/mz/v81/i4/p569

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. V. Vlasov, S. A. Ivanov, “Sharp estimates for solutions of systems with aftereffect”, St. Petersburg Math. J., 20:2 (2009), 193–211  mathnet  crossref  mathscinet  zmath  isi  elib
    2. V. V. Vlasov, D. A. Medvedev, “Functional-differential equations in Sobolev spaces and related problems of spectral theory”, Journal of Mathematical Sciences, 164:5 (2010), 659–841  mathnet  crossref  mathscinet  elib
    3. M. S. Sgibnev, “Behavior at infinity of a solution to a differential-difference equation”, Siberian Math. J., 53:6 (2012), 1139–1154  mathnet  crossref  mathscinet  isi  elib  elib
    4. M. S. Sgibnev, “Behavior at infinity of a solution to a matrix differential-difference equation”, Siberian Math. J., 55:3 (2014), 530–543  mathnet  crossref  mathscinet  isi  elib  elib
    5. M. S. Sgibnev, “An asymptotic expansion of the solution of a matrix difference equation of general form”, Sb. Math., 205:12 (2014), 1815–1828  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. Sgibnev M.S., “Asymptotic Expansion of the Solution of a Differential-Difference Equation of General Form”, Differ. Equ., 50:3 (2014), 323–334  crossref  mathscinet  zmath  isi  elib  scopus
    7. Sgibnev M.S., “Asymptotic Expansion of the Solution of a Matrix Differential-Difference Equation of the General Form”, Differ. Equ., 52:1 (2016), 28–38  crossref  mathscinet  zmath  isi  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:316
    Full text:103
    References:76
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020