RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2007, Volume 81, Issue 4, Pages 636–640 (Mi mz3708)  

This article is cited in 10 scientific papers (total in 10 papers)

Brief Communications

Regular and Completely Regular Differential Operators

E. A. Shiryaev, A. A. Shkalikov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Keywords: ordinary differential operator, Birkhoff regularity, complete regularity, eigenfunction expansion theorem, Green kernel

DOI: https://doi.org/10.4213/mzm3708

Full text: PDF file (304 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2007, 81:4, 566–570

Bibliographic databases:

Received: 10.11.2006

Citation: E. A. Shiryaev, A. A. Shkalikov, “Regular and Completely Regular Differential Operators”, Mat. Zametki, 81:4 (2007), 636–640; Math. Notes, 81:4 (2007), 566–570

Citation in format AMSBIB
\Bibitem{ShiShk07}
\by E.~A.~Shiryaev, A.~A.~Shkalikov
\paper Regular and Completely Regular Differential Operators
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 4
\pages 636--640
\mathnet{http://mi.mathnet.ru/mz3708}
\crossref{https://doi.org/10.4213/mzm3708}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2352030}
\zmath{https://zbmath.org/?q=an:1156.34075}
\elib{https://elibrary.ru/item.asp?id=9486233}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 4
\pages 566--570
\crossref{https://doi.org/10.1134/S0001434607030352}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000246269000035}
\elib{https://elibrary.ru/item.asp?id=13558914}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248351430}


Linking options:
  • http://mi.mathnet.ru/eng/mz3708
  • https://doi.org/10.4213/mzm3708
  • http://mi.mathnet.ru/eng/mz/v81/i4/p636

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. V. Pokornyi, M. B. Zvereva, S. A. Shabrov, “Sturm–Liouville oscillation theory for impulsive problems”, Russian Math. Surveys, 63:1 (2008), 109–153  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    2. Freiling G., “Irregular boundary value problems revisited”, Results Math., 62:3-4 (2012), 265–294  crossref  mathscinet  zmath  isi  elib  scopus
    3. Gesztesy F. Tkachenko V., “A Schauder and Riesz basis criterion for non-self-adjoint Schrödinger operators with periodic and antiperiodic boundary conditions”, J. Differential Equations, 253:2 (2012), 400–437  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    4. A. M. Akhtyamov, “On the Spectrum of an Odd-Order Differential Operator”, Math. Notes, 101:5 (2017), 755–758  mathnet  crossref  crossref  mathscinet  isi  elib
    5. A. M. Akhtyamov, “Degenerate boundary conditions for a third-order differential equation”, Differ. Equ., 54:4 (2018), 419–426  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
    6. Baranets'kyi Ya.O. Kalenyuk P.I. Kolyasa L.I., “Spectral Properties of Nonself-Adjoint Nonlocal Boundary-Value Problems For the Operator of Differentiation of Even Order”, Ukr. Math. J., 70:6 (2018), 851–865  crossref  isi  scopus
    7. Akhtyamov A.M., “Finiteness of the Spectrum of Boundary Value Problems”, Differ. Equ., 55:1 (2019), 142–144  crossref  isi  scopus
    8. Sadovnichii V.A. Sultanaev Ya.T. Akhtyamov A.M., “Degenerate Boundary Conditions For the Sturm-Liouville Problem on a Geometric Graph”, Differ. Equ., 55:4 (2019), 500–509  crossref  isi
    9. Sadovnichii V.A. Sultanaev Ya.T. Akhtyamov A.M., “Degenerate Boundary Conditions on a Geometric Graph”, Dokl. Math., 99:2 (2019), 167–170  crossref  isi
    10. V. A. Sadovnichii, Ya. T. Sultanaev, A. M. Akhtyamov, “The finiteness of the spectrum of boundary value problems defined on a geometric graph”, Trans. Moscow Math. Soc., 80 (2019), 123–131  mathnet  crossref  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:553
    Full text:216
    References:64
    First page:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020