|
This article is cited in 11 scientific papers (total in 11 papers)
Brief Communications
Regular and Completely Regular Differential Operators
E. A. Shiryaev, A. A. Shkalikov M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Keywords:
ordinary differential operator, Birkhoff regularity, complete regularity, eigenfunction expansion theorem, Green kernel
DOI:
https://doi.org/10.4213/mzm3708
Full text:
PDF file (304 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 2007, 81:4, 566–570
Bibliographic databases:
Received: 10.11.2006
Citation:
E. A. Shiryaev, A. A. Shkalikov, “Regular and Completely Regular Differential Operators”, Mat. Zametki, 81:4 (2007), 636–640; Math. Notes, 81:4 (2007), 566–570
Citation in format AMSBIB
\Bibitem{ShiShk07}
\by E.~A.~Shiryaev, A.~A.~Shkalikov
\paper Regular and Completely Regular Differential Operators
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 4
\pages 636--640
\mathnet{http://mi.mathnet.ru/mz3708}
\crossref{https://doi.org/10.4213/mzm3708}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2352030}
\zmath{https://zbmath.org/?q=an:1156.34075}
\elib{https://elibrary.ru/item.asp?id=9486233}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 4
\pages 566--570
\crossref{https://doi.org/10.1134/S0001434607030352}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000246269000035}
\elib{https://elibrary.ru/item.asp?id=13558914}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248351430}
Linking options:
http://mi.mathnet.ru/eng/mz3708https://doi.org/10.4213/mzm3708 http://mi.mathnet.ru/eng/mz/v81/i4/p636
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Yu. V. Pokornyi, M. B. Zvereva, S. A. Shabrov, “Sturm–Liouville oscillation theory for impulsive problems”, Russian Math. Surveys, 63:1 (2008), 109–153
-
Freiling G., “Irregular boundary value problems revisited”, Results Math., 62:3-4 (2012), 265–294
-
Gesztesy F. Tkachenko V., “A Schauder and Riesz basis criterion for non-self-adjoint Schrödinger operators with periodic and antiperiodic boundary conditions”, J. Differential Equations, 253:2 (2012), 400–437
-
A. M. Akhtyamov, “On the Spectrum of an Odd-Order Differential Operator”, Math. Notes, 101:5 (2017), 755–758
-
A. M. Akhtyamov, “Degenerate boundary conditions for a third-order differential equation”, Differ. Equ., 54:4 (2018), 419–426
-
Baranets'kyi Ya.O. Kalenyuk P.I. Kolyasa L.I., “Spectral Properties of Nonself-Adjoint Nonlocal Boundary-Value Problems For the Operator of Differentiation of Even Order”, Ukr. Math. J., 70:6 (2018), 851–865
-
Akhtyamov A.M., “Finiteness of the Spectrum of Boundary Value Problems”, Differ. Equ., 55:1 (2019), 142–144
-
Sadovnichii V.A. Sultanaev Ya.T. Akhtyamov A.M., “Degenerate Boundary Conditions For the Sturm-Liouville Problem on a Geometric Graph”, Differ. Equ., 55:4 (2019), 500–509
-
Sadovnichii V.A. Sultanaev Ya.T. Akhtyamov A.M., “Degenerate Boundary Conditions on a Geometric Graph”, Dokl. Math., 99:2 (2019), 167–170
-
V. A. Sadovnichii, Ya. T. Sultanaev, A. M. Akhtyamov, “The finiteness of the spectrum of boundary value problems defined on a geometric graph”, Trans. Moscow Math. Soc., 80 (2019), 123–131
-
A. M. Akhtyamov, “O konechnom spektre trekhtochechnykh kraevykh zadach”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 13:2 (2020), 130–135
|
Number of views: |
This page: | 561 | Full text: | 221 | References: | 64 | First page: | 19 |
|