RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2007, Volume 81, Issue 6, Pages 939–947 (Mi mz3744)  

This article is cited in 5 scientific papers (total in 5 papers)

Random $A$-Permutations: Convergence to a Poisson Process

A. L. Yakymiv

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: Suppose that $S_n$ is the permutation group of degree $n$, $A$ is a subset of the set of natural numbers $\mathbb N$, and $T_n=T_n(A)$ is the set of all permutations from $S_n$ whose cycle lengths belong to the set $A$. Permutations from $T_n$ are usually called $A$-permutations. We consider a wide class of sets $A$ of positive asymptotic density. Suppose that $\zeta_{mn}$ is the number of cycles of length $m$ of a random permutation uniformly distributed on $T_n$. It is shown in this paper that the finite-dimensional distributions of the random process $\{\zeta_{mn},m\in A\}$ weakly converge as $n\to\infty$ to the finite-dimensional distributions of a Poisson process on $A$.

Keywords: random permutation, Poisson process, permutation group, permutation cycle, total variance distance, normal distribution

DOI: https://doi.org/10.4213/mzm3744

Full text: PDF file (486 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2007, 81:6, 840–846

Bibliographic databases:

UDC: 519.2
Received: 24.11.2005
Revised: 19.09.2006

Citation: A. L. Yakymiv, “Random $A$-Permutations: Convergence to a Poisson Process”, Mat. Zametki, 81:6 (2007), 939–947; Math. Notes, 81:6 (2007), 840–846

Citation in format AMSBIB
\Bibitem{Yak07}
\by A.~L.~Yakymiv
\paper Random $A$-Permutations: Convergence to a Poisson Process
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 6
\pages 939--947
\mathnet{http://mi.mathnet.ru/mz3744}
\crossref{https://doi.org/10.4213/mzm3744}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2349109}
\zmath{https://zbmath.org/?q=an:1134.60008}
\elib{http://elibrary.ru/item.asp?id=9511617}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 6
\pages 840--846
\crossref{https://doi.org/10.1134/S0001434607050318}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000247942500031}
\elib{http://elibrary.ru/item.asp?id=13550855}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547254571}


Linking options:
  • http://mi.mathnet.ru/eng/mz3744
  • https://doi.org/10.4213/mzm3744
  • http://mi.mathnet.ru/eng/mz/v81/i6/p939

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. L. Yakymiv, “Limit Theorem for the Middle Members of Ordered Cycle Lengths in Random $A$-Permutations”, Theory Probab. Appl., 54:1 (2010), 114–128  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. A. L. Yakymiv, “A limit theorem for the logarithm of the order of a random $A$-permutation”, Discrete Math. Appl., 20:3 (2010), 247–275  mathnet  crossref  crossref  mathscinet  zmath  elib  elib
    3. Benaych-Georges F., “Cycles of Free Words in Several Independent Random Permutations with Restricted Cycle Lengths”, Indiana Univ. Math. J., 59:5 (2010), 1547–1586  crossref  mathscinet  zmath  isi  elib  scopus
    4. Betz V., Schaefer H., “The Number of Cycles in Random Permutations Without Long Cycles Is Asymptotically Gaussian”, ALEA-Latin Am. J. Probab. Math. Stat., 14:1 (2017), 427–444  mathscinet  zmath  isi
    5. Elboim D., Peled R., “Limit Distributions For Euclidean Random Permutations”, Commun. Math. Phys., 369:2 (2019), 457–522  crossref  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:265
    Full text:71
    References:25
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019