RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2002, Volume 71, Issue 5, Pages 677–685 (Mi mz376)  

This article is cited in 1 scientific paper (total in 1 paper)

Hopf Algebra Dual to a Polynomial Algebra over a Commutative Ring

V. L. Kurakin


Abstract: For a polynomial algebra $A=R[X]$ or $R[X,X^{-1}]$ in several variables over a commutative ring $R$ with a Hopf algebra structure $(A,m,e,\Delta,\varepsilon,S)$ the existence of the dual Hopf algebra $(A^\circ,\Delta ^\circ,\varepsilon ^\circ,m^\circ,e^\circ,S^\circ)$ is proved.

DOI: https://doi.org/10.4213/mzm376

Full text: PDF file (200 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2002, 71:5, 617–623

Bibliographic databases:

UDC: 512.66
Received: 02.10.2001

Citation: V. L. Kurakin, “Hopf Algebra Dual to a Polynomial Algebra over a Commutative Ring”, Mat. Zametki, 71:5 (2002), 677–685; Math. Notes, 71:5 (2002), 617–623

Citation in format AMSBIB
\Bibitem{Kur02}
\by V.~L.~Kurakin
\paper Hopf Algebra Dual to a Polynomial Algebra over a Commutative Ring
\jour Mat. Zametki
\yr 2002
\vol 71
\issue 5
\pages 677--685
\mathnet{http://mi.mathnet.ru/mz376}
\crossref{https://doi.org/10.4213/mzm376}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1936192}
\zmath{https://zbmath.org/?q=an:1027.16022}
\transl
\jour Math. Notes
\yr 2002
\vol 71
\issue 5
\pages 617--623
\crossref{https://doi.org/10.1023/A:1015879619768}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000176477200004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141513945}


Linking options:
  • http://mi.mathnet.ru/eng/mz376
  • https://doi.org/10.4213/mzm376
  • http://mi.mathnet.ru/eng/mz/v71/i5/p677

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. L. Kurakin, “Hopf algebras of linear recurring sequences”, Discrete Math. Appl., 14:2 (2004), 115–152  mathnet  crossref  crossref  mathscinet  zmath
  • Математические заметки Mathematical Notes
    Number of views:
    This page:309
    Full text:123
    References:68
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020