RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2007, Volume 82, Issue 2, Pages 177–182 (Mi mz3789)  

This article is cited in 4 scientific papers (total in 4 papers)

Discretization of the Solutions of the Heat Equation

Sh. U. Azhgaliev

L. N. Gumilev Eurasian National University

Abstract: We obtain the exact order of discretization (reconstruction) errors, given linear information on the solutions of the heat equation.

Keywords: heat equation, Cauchy problem, discretization error, Sobolev function classes, Fourier–Lebesgue trigonometric coefficients, Schmidt orthogonalization method

DOI: https://doi.org/10.4213/mzm3789

Full text: PDF file (418 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2007, 82:2, 153–158

Bibliographic databases:

UDC: 517.958
Received: 14.05.2003

Citation: Sh. U. Azhgaliev, “Discretization of the Solutions of the Heat Equation”, Mat. Zametki, 82:2 (2007), 177–182; Math. Notes, 82:2 (2007), 153–158

Citation in format AMSBIB
\Bibitem{Azh07}
\by Sh.~U.~Azhgaliev
\paper Discretization of the Solutions of the Heat Equation
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 2
\pages 177--182
\mathnet{http://mi.mathnet.ru/mz3789}
\crossref{https://doi.org/10.4213/mzm3789}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2374895}
\elib{http://elibrary.ru/item.asp?id=12844012}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 2
\pages 153--158
\crossref{https://doi.org/10.1134/S000143460707019X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000249410700019}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-58649121280}


Linking options:
  • http://mi.mathnet.ru/eng/mz3789
  • https://doi.org/10.4213/mzm3789
  • http://mi.mathnet.ru/eng/mz/v82/i2/p177

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Ibatulin I. Z., Temirgaliev N., “On the informative power of all possible linear functionals for the discretization of solutions of the Klein-Gordon equation in the metric of $L^{2,\infty}$”, Differ. Equ., 44:4 (2008), 510–526  crossref  mathscinet  zmath  isi  scopus
    2. Abikenova Sh.K., Temirgaliev N., “On the sharp order of informativeness of all possible linear functionals in the discretization of solutions of the wave equation”, Differ. Equ., 46:8 (2010), 1211–1214  crossref  mathscinet  zmath  isi  scopus
    3. Sh. K. Abikenova, A. Utesov, N. Temirgaliev, “On the Discretization of Solutions of the Wave Equation with Initial Conditions from Generalized Sobolev Classes”, Math. Notes, 91:3 (2012), 430–434  mathnet  crossref  crossref  mathscinet  isi  elib
    4. N. Temirgaliev, K. E. Sherniyazov, M. E. Berikhanova, “Exact Orders of Computational (Numerical) Diameters in Problems of Reconstructing Functions and Sampling Solutions of the Klein–Gordon Equation from Fourier Coefficients”, Proc. Steklov Inst. Math., 282, suppl. 1 (2013), S165–S191  mathnet  crossref  crossref  isi  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:403
    Full text:190
    References:34
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020