RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2007, Volume 82, Issue 2, Pages 183–189 (Mi mz3801)  

This article is cited in 1 scientific paper (total in 1 paper)

Canonical Representatives in Strict Isomorphism Classes of Formal Groups

M. V. Bondarko

St. Petersburg State University, Department of Mathematics and Mechanics

Abstract: The aim of the present paper is to explicitly construct canonical representatives in every strict isomorphism class of commutative formal groups over an arbitrary torsion-free ring. The case of an $\mathbb Z_{(p)}$-algebra is treated separately. We prove that, under natural conditions on a subring, the canonical representatives of formal groups over the subring agree with the representatives for the ring. Necessary and sufficient conditions for a mapping induced on strict isomorphism classes of formal groups by a homomorphism of torsion-free rings to be injective and surjective are established.

Keywords: commutative formal group, strict isomorphism, torsion-free ring, canonical representatives, universal curvilinear law

DOI: https://doi.org/10.4213/mzm3801

Full text: PDF file (416 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2007, 82:2, 159–164

Bibliographic databases:

UDC: 512.741.5
Received: 04.02.2004
Revised: 04.12.2006

Citation: M. V. Bondarko, “Canonical Representatives in Strict Isomorphism Classes of Formal Groups”, Mat. Zametki, 82:2 (2007), 183–189; Math. Notes, 82:2 (2007), 159–164

Citation in format AMSBIB
\Bibitem{Bon07}
\by M.~V.~Bondarko
\paper Canonical Representatives in Strict Isomorphism Classes of Formal Groups
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 2
\pages 183--189
\mathnet{http://mi.mathnet.ru/mz3801}
\crossref{https://doi.org/10.4213/mzm3801}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2374896}
\elib{http://elibrary.ru/item.asp?id=12844013}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 2
\pages 159--164
\crossref{https://doi.org/10.1134/S0001434607070206}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000249410700020}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-58649123122}


Linking options:
  • http://mi.mathnet.ru/eng/mz3801
  • https://doi.org/10.4213/mzm3801
  • http://mi.mathnet.ru/eng/mz/v82/i2/p183

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Vostokov S.V., Afanas'eva S.S., Bondarko M.V., Volkov V.V., Demchenko O.V., Ikonnikova E.V., Zhukov I.B., Nekrasov I.I., Pital P.N., “Explicit Constructions and the Arithmetic of Local Number Fields”, Vestnik St. Petersburg Univ. Math., 50:3 (2017), 242–264  crossref  mathscinet  isi  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:250
    Full text:96
    References:30
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020