RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2007, Volume 82, Issue 4, Pages 637–640 (Mi mz3813)  

This article is cited in 7 scientific papers (total in 7 papers)

Brief Communications

Relationship Between Symmetries of the Tzizeica Equation and the Novikov–Veselov Hierarchy

A. E. Mironovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Novosibirsk State University, Mechanics and Mathematics Department

Keywords: Tzizeica equation, Novikov–Veselov Hierarchy, Lagrangian manifolds, Bloch solution, finite-gap spectrum, isospectral deformation, Schrödinger operator

DOI: https://doi.org/10.4213/mzm3813

Full text: PDF file (328 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2007, 82:4, 569–572

Bibliographic databases:

Received: 03.04.2007

Citation: A. E. Mironov, “Relationship Between Symmetries of the Tzizeica Equation and the Novikov–Veselov Hierarchy”, Mat. Zametki, 82:4 (2007), 637–640; Math. Notes, 82:4 (2007), 569–572

Citation in format AMSBIB
\Bibitem{Mir07}
\by A.~E.~Mironov
\paper Relationship Between Symmetries of the Tzizeica Equation and the Novikov--Veselov Hierarchy
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 4
\pages 637--640
\mathnet{http://mi.mathnet.ru/mz3813}
\crossref{https://doi.org/10.4213/mzm3813}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2375800}
\zmath{https://zbmath.org/?q=an:1146.37041}
\elib{http://elibrary.ru/item.asp?id=9575615}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 4
\pages 569--572
\crossref{https://doi.org/10.1134/S0001434607090349}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000250565600034}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36049000221}


Linking options:
  • http://mi.mathnet.ru/eng/mz3813
  • https://doi.org/10.4213/mzm3813
  • http://mi.mathnet.ru/eng/mz/v82/i4/p637

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. E. Mironov, “Spectral Data for Hamiltonian-Minimal Lagrangian Tori in $\mathbb C\mathrm P^2$”, Proc. Steklov Inst. Math., 263 (2008), 112–126  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    2. Nimmo J. J. C., Ruijsenaars S. N. M., “Tzitzeica solitons versus relativistic Calogero–Moser three-body clusters”, J. Math. Phys., 50:4 (2009), 043511, 31 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    3. Udrişte C., Arsinte V., Cipu C., “Tzitzeica and sine-Gordon solitons”, Balkan J. Geom. Appl., 16:1 (2011), 150–154  mathscinet  zmath  isi
    4. Chang J.-H., “The Gould-Hopper Polynomials in the Novikov-Veselov Equation”, J. Math. Phys., 52:9 (2011), 092703  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    5. Jen-Hsu Chang, “On the $N$-Solitons Solutions in the Novikov–Veselov Equation”, SIGMA, 9 (2013), 006, 13 pp.  mathnet  crossref  mathscinet
    6. Ma H., Mironov A.E., Zuo D., “An Energy Functional For Lagrangian Tori in Cp2”, Ann. Glob. Anal. Geom., 53:4 (2018), 583–595  crossref  mathscinet  zmath  isi  scopus
    7. M. S. Ermentai, “Ob odnom semeistve minimalnykh izotropnykh torov i butylok Kleina v $\mathbb{C}P^3$”, Sib. elektron. matem. izv., 16 (2019), 955–958  mathnet  crossref
  • Математические заметки Mathematical Notes
    Number of views:
    This page:391
    Full text:197
    References:36
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020