RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2002, Volume 71, Issue 5, Pages 742–750 (Mi mz382)  

This article is cited in 3 scientific papers (total in 3 papers)

Extremal Points of Integral Curves of Second-Order Ordinary Differential Equations and Their Local Stability

I. P. Pavlotsky, M. Strianese

Università degli Studi di Napoli Federico II

Abstract: In [1–3] an extension of the solution of the equation $a(x,\dot x)\ddot x=1$, $x\in \mathbb R$, $a(x,\dot x)\in C^1$, to the singular set $S=\{(x,y)\in \mathbb R^2:a(x,y)=0\}$, $y=\dot x$, is defined in terms of the first integral. In this case all stationary points and all local extrema of the integral curve $x(y)$ such that the function $x(y)$ has a derivative at the extreme point belong to a set $S\cup Y$, where $Y$ is the line $y=0$. We study the local stability of local extrema of different types in the families of equations $[a(x,y)+\varepsilon b(x,y)]\dot y=1$, $b(x,y)\in C^1$ for $|\varepsilon |$ small enough. Introduce the notation $S^*=\{(x,y)\in \mathbb R^2:a(x,y)+\varepsilon b(x,y)=0\}$. By abuse of language, we talk about the stability of local extrema when $S$ is replaced with $S^*$. Some sufficient conditions for stability and instability are found.

DOI: https://doi.org/10.4213/mzm382

Full text: PDF file (269 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2002, 71:5, 676–683

Bibliographic databases:

UDC: 517
Received: 30.05.2001

Citation: I. P. Pavlotsky, M. Strianese, “Extremal Points of Integral Curves of Second-Order Ordinary Differential Equations and Their Local Stability”, Mat. Zametki, 71:5 (2002), 742–750; Math. Notes, 71:5 (2002), 676–683

Citation in format AMSBIB
\Bibitem{PavStr02}
\by I.~P.~Pavlotsky, M.~Strianese
\paper Extremal Points of Integral Curves of Second-Order Ordinary Differential Equations and Their Local Stability
\jour Mat. Zametki
\yr 2002
\vol 71
\issue 5
\pages 742--750
\mathnet{http://mi.mathnet.ru/mz382}
\crossref{https://doi.org/10.4213/mzm382}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1936198}
\zmath{https://zbmath.org/?q=an:1055.34101}
\transl
\jour Math. Notes
\yr 2002
\vol 71
\issue 5
\pages 676--683
\crossref{https://doi.org/10.1023/A:1015892022494}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000176477200010}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141737010}


Linking options:
  • http://mi.mathnet.ru/eng/mz382
  • https://doi.org/10.4213/mzm382
  • http://mi.mathnet.ru/eng/mz/v71/i5/p742

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. P. Pavlotsky, M. Strianese, “Uniform Stability of Local Extrema of an Integral Curve of an ODE of Second Order”, Math. Notes, 75:3 (2004), 352–359  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. Pavlotsky, IP, “Stability of an integral curve of a second-order ordinary differential equation at the intersection of its singular set with the axis y=0”, Doklady Mathematics, 77:2 (2008), 179  crossref  mathscinet  zmath  isi  scopus
    3. Pavlotsky, IP, “Behavior of the trajectories of a second-order ordinary differential equation in a neighborhood of a singular point”, Doklady Mathematics, 77:2 (2008), 205  mathnet  crossref  mathscinet  zmath  isi  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:215
    Full text:35
    References:28
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019