  RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE  General information Latest issue Archive Impact factor Subscription Guidelines for authors License agreement Submit a manuscript Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Mat. Zametki: Year: Volume: Issue: Page: Find

 Personal entry: Login: Password: Save password Enter Forgotten password? Register

 Mat. Zametki, 2002, Volume 71, Issue 5, Pages 742–750 (Mi mz382)  Extremal Points of Integral Curves of Second-Order Ordinary Differential Equations and Their Local Stability

I. P. Pavlotsky, M. Strianese

Università degli Studi di Napoli Federico II

Abstract: In [1–3] an extension of the solution of the equation $a(x,\dot x)\ddot x=1$, $x\in \mathbb R$, $a(x,\dot x)\in C^1$, to the singular set $S=\{(x,y)\in \mathbb R^2:a(x,y)=0\}$, $y=\dot x$, is defined in terms of the first integral. In this case all stationary points and all local extrema of the integral curve $x(y)$ such that the function $x(y)$ has a derivative at the extreme point belong to a set $S\cup Y$, where $Y$ is the line $y=0$. We study the local stability of local extrema of different types in the families of equations $[a(x,y)+\varepsilon b(x,y)]\dot y=1$, $b(x,y)\in C^1$ for $|\varepsilon |$ small enough. Introduce the notation $S^*=\{(x,y)\in \mathbb R^2:a(x,y)+\varepsilon b(x,y)=0\}$. By abuse of language, we talk about the stability of local extrema when $S$ is replaced with $S^*$. Some sufficient conditions for stability and instability are found.

DOI: https://doi.org/10.4213/mzm382  Full text: PDF file (269 kB) References: PDF file   HTML file

English version:
Mathematical Notes, 2002, 71:5, 676–683 Bibliographic databases:    UDC: 517

Citation: I. P. Pavlotsky, M. Strianese, “Extremal Points of Integral Curves of Second-Order Ordinary Differential Equations and Their Local Stability”, Mat. Zametki, 71:5 (2002), 742–750; Math. Notes, 71:5 (2002), 676–683 Citation in format AMSBIB
\Bibitem{PavStr02} \by I.~P.~Pavlotsky, M.~Strianese \paper Extremal Points of Integral Curves of Second-Order Ordinary Differential Equations and Their Local Stability \jour Mat. Zametki \yr 2002 \vol 71 \issue 5 \pages 742--750 \mathnet{http://mi.mathnet.ru/mz382} \crossref{https://doi.org/10.4213/mzm382} \mathscinet{http://www.ams.org/mathscinet-getitem?mr=1936198} \zmath{https://zbmath.org/?q=an:1055.34101} \transl \jour Math. Notes \yr 2002 \vol 71 \issue 5 \pages 676--683 \crossref{https://doi.org/10.1023/A:1015892022494} \isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000176477200010} \scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141737010} 

• http://mi.mathnet.ru/eng/mz382
• https://doi.org/10.4213/mzm382
• http://mi.mathnet.ru/eng/mz/v71/i5/p742

 SHARE:      Citing articles on Google Scholar: Russian citations, English citations
Related articles on Google Scholar: Russian articles, English articles

This publication is cited in the following articles:
1. I. P. Pavlotsky, M. Strianese, “Uniform Stability of Local Extrema of an Integral Curve of an ODE of Second Order”, Math. Notes, 75:3 (2004), 352–359      2. Pavlotsky, IP, “Stability of an integral curve of a second-order ordinary differential equation at the intersection of its singular set with the axis y=0”, Doklady Mathematics, 77:2 (2008), 179     3. Pavlotsky, IP, “Behavior of the trajectories of a second-order ordinary differential equation in a neighborhood of a singular point”, Doklady Mathematics, 77:2 (2008), 205      •  Number of views: This page: 215 Full text: 35 References: 28 First page: 1 Contact us: math-net2019_03 [at] mi-ras ru Terms of Use Registration Logotypes © Steklov Mathematical Institute RAS, 2019