RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2002, Volume 71, Issue 5, Pages 751–760 (Mi mz383)  

Moduli Spaces of Maslov Complex Germs

S. E. Roganova

M. V. Lomonosov Moscow State University

Abstract: Maslov complex germs (complex vector bundles, satisfying certain additional conditions, over isotropic submanifolds of the phase space) are one of the central objects in the theory of semiclassical quantization. To these bundles one assigns spectral series (quasimodes) of partial differential operators. We describe the moduli spaces of Maslov complex germs over a point and a closed trajectory and find the moduli of complex germs generated by a given symplectic connection over an invariant torus.

DOI: https://doi.org/10.4213/mzm383

Full text: PDF file (210 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2002, 71:5, 684–691

Bibliographic databases:

UDC: 514+517.958
Received: 23.01.2001
Revised: 09.10.2001

Citation: S. E. Roganova, “Moduli Spaces of Maslov Complex Germs”, Mat. Zametki, 71:5 (2002), 751–760; Math. Notes, 71:5 (2002), 684–691

Citation in format AMSBIB
\Bibitem{Rog02}
\by S.~E.~Roganova
\paper Moduli Spaces of Maslov Complex Germs
\jour Mat. Zametki
\yr 2002
\vol 71
\issue 5
\pages 751--760
\mathnet{http://mi.mathnet.ru/mz383}
\crossref{https://doi.org/10.4213/mzm383}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1936199}
\zmath{https://zbmath.org/?q=an:1034.53082}
\elib{http://elibrary.ru/item.asp?id=13837297}
\transl
\jour Math. Notes
\yr 2002
\vol 71
\issue 5
\pages 684--691
\crossref{https://doi.org/10.1023/A:1015844106564}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000176477200011}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141513943}


Linking options:
  • http://mi.mathnet.ru/eng/mz383
  • https://doi.org/10.4213/mzm383
  • http://mi.mathnet.ru/eng/mz/v71/i5/p751

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:192
    Full text:84
    References:39
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020