RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2008, Volume 84, Issue 3, Pages 440–451 (Mi mz3895)  

This article is cited in 1 scientific paper (total in 1 paper)

Minimizing Coincidence in Positive Codimension

T. N. Fomenko

M. V. Lomonosov Moscow State University

Abstract: Let $f$ and $g$ be maps between smooth manifolds $M$ and $N$ of dimensions $n+m$ and $n$, respectively (where $m>0$ and $n>2$). Suppose that the image $(fxg)(M)$ intersects the diagonal $N\times N$ in finitely many points, whose preimages are smooth $m$-submanifolds in $M$. The problem of minimizing the coincidence set $\operatorname{Coin}(f,g)$ of the maps $f$ and $g$ with respect to these preimages and/or their components is considered. The author's earlier results are strengthened. Namely, sufficient conditions under which such a coincidence $m$-submanifold can be removed without additional dimensional constraints are obtained.

Keywords: Nielsen theory, coincidence set of two maps, minimization by homotopy, bordism, oriented manifold, Morse function, collar neighborhood, normal bundle

DOI: https://doi.org/10.4213/mzm3895

Full text: PDF file (687 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2008, 84:3, 407–416

Bibliographic databases:

UDC: 515.126.4, 515.142.426, 515.164.174
Received: 19.06.2007

Citation: T. N. Fomenko, “Minimizing Coincidence in Positive Codimension”, Mat. Zametki, 84:3 (2008), 440–451; Math. Notes, 84:3 (2008), 407–416

Citation in format AMSBIB
\Bibitem{Fom08}
\by T.~N.~Fomenko
\paper Minimizing Coincidence in Positive Codimension
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 3
\pages 440--451
\mathnet{http://mi.mathnet.ru/mz3895}
\crossref{https://doi.org/10.4213/mzm3895}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2473760}
\zmath{https://zbmath.org/?q=an:1156.55005}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 3
\pages 407--416
\crossref{https://doi.org/10.1134/S0001434608090113}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000260516700011}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-55149123434}


Linking options:
  • http://mi.mathnet.ru/eng/mz3895
  • https://doi.org/10.4213/mzm3895
  • http://mi.mathnet.ru/eng/mz/v84/i3/p440

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bogatyi S. Frolkina O., “On multiplicity of maps”, Topology Appl., 159:7 (2012), 1778–1786  crossref  mathscinet  zmath  isi  elib  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:240
    Full text:101
    References:33
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020