RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2007, Volume 82, Issue 4, Pages 515–518 (Mi mz4019)  

This article is cited in 2 scientific papers (total in 2 papers)

Representation of the Group of Holomorphic Symmetries of a Real Germ in the Symmetry Group of Its Model Surface

V. K. Beloshapka

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Local polynomial models of real submanifolds of complex space were constructed and studied in a series of papers. Among the main features of model surfaces, there is the property that the dimension of the local group of holomorphic symmetries of a germ does not exceed that of the same group of the tangent model surface of this germ. In the paper, this assertion is rendered much stronger; namely, it is proved that the connected component of the identity element in the symmetry group of a nondegenerate germ is isomorphic as a Lie group to a subgroup of the symmetry group of its tangent model surface.

Keywords: germ, holomorphic symmetry group, tangent model surface, Lie group

DOI: https://doi.org/10.4213/mzm4019

Full text: PDF file (387 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2007, 82:4, 461–463

Bibliographic databases:

UDC: 517.53
Received: 30.03.2006
Revised: 15.03.2007

Citation: V. K. Beloshapka, “Representation of the Group of Holomorphic Symmetries of a Real Germ in the Symmetry Group of Its Model Surface”, Mat. Zametki, 82:4 (2007), 515–518; Math. Notes, 82:4 (2007), 461–463

Citation in format AMSBIB
\Bibitem{Bel07}
\by V.~K.~Beloshapka
\paper Representation of the Group of Holomorphic Symmetries of a Real Germ in the Symmetry Group of Its Model Surface
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 4
\pages 515--518
\mathnet{http://mi.mathnet.ru/mz4019}
\crossref{https://doi.org/10.4213/mzm4019}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2375786}
\zmath{https://zbmath.org/?q=an:1146.32018}
\elib{http://elibrary.ru/item.asp?id=9575601}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 4
\pages 461--463
\crossref{https://doi.org/10.1134/S0001434607090209}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000250565600020}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36049010358}


Linking options:
  • http://mi.mathnet.ru/eng/mz4019
  • https://doi.org/10.4213/mzm4019
  • http://mi.mathnet.ru/eng/mz/v82/i4/p515

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. J. Merker, M. Sabzevari, “The Cartan equivalence problem for Levi-non-degenerate real hypersurfaces $M^3\subset\mathbb C^2$”, Izv. Math., 78:6 (2014), 1158–1194  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. Beloshapka V.K. Kossovskii I.G., “the Sphere in C-2 as a Model Surface For Degenerate Hypersurfaces in C-3”, Russ. J. Math. Phys., 22:4 (2015), 437–443  crossref  mathscinet  zmath  isi  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:221
    Full text:46
    References:32
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019