RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2007, Volume 82, Issue 5, Pages 729–735 (Mi mz4085)  

This article is cited in 3 scientific papers (total in 3 papers)

Operations on Approximatively Compact Sets

I. A. Pyatyshev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: In the paper, the problem of preserving the property of approximative compactness under diverse operations is considered. In an arbitrary uniformly convex separable space, we construct an example of two approximatively compact sets whose intersection is not approximatively compact. An example of two linear approximatively compact sets for which the closure of their algebraic sum is not approximatively compact is constructed. In an arbitrary Banach space, we construct two nonlinear approximatively compact sets whose algebraic sum is closed but not approximatively compact. We also prove that any uniformly closed Banach space contains an approximatively compact cavity.

Keywords: Approximatively compact set, algebraic sum of sets, uniformly closed Banach space, Efimov–Stechkin space

DOI: https://doi.org/10.4213/mzm4085

Full text: PDF file (418 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2007, 82:5, 653–659

Bibliographic databases:

UDC: 517.982.256
Received: 05.07.2006
Revised: 16.04.2007

Citation: I. A. Pyatyshev, “Operations on Approximatively Compact Sets”, Mat. Zametki, 82:5 (2007), 729–735; Math. Notes, 82:5 (2007), 653–659

Citation in format AMSBIB
\Bibitem{Pya07}
\by I.~A.~Pyatyshev
\paper Operations on Approximatively Compact Sets
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 5
\pages 729--735
\mathnet{http://mi.mathnet.ru/mz4085}
\crossref{https://doi.org/10.4213/mzm4085}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2399952}
\zmath{https://zbmath.org/?q=an:1159.46011}
\elib{http://elibrary.ru/item.asp?id=12844050}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 5
\pages 653--659
\crossref{https://doi.org/10.1134/S0001434607110089}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000252128700008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38349051440}


Linking options:
  • http://mi.mathnet.ru/eng/mz4085
  • https://doi.org/10.4213/mzm4085
  • http://mi.mathnet.ru/eng/mz/v82/i5/p729

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. De la Sen M., “Some Results on Fixed and Best Proximity Points of Precyclic Self-Mappings”, J. Appl. Math., 2013, 310106  crossref  mathscinet  isi  elib  scopus
    2. De la Sen M., “Some Results on Fixed and Best Proximity Points of Multivalued Cyclic Self-Mappings with a Partial Order”, Abstract Appl. Anal., 2013, 968492  crossref  mathscinet  zmath  isi  scopus
    3. Luo Zh., Sun L., Zhang W., “a Remark on the Stability of Approximative Compactness”, J. Funct. space, 2016, 2734947  crossref  mathscinet  zmath  isi  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:222
    Full text:63
    References:48
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019