RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2002, Volume 72, Issue 2, Pages 207–215 (Mi mz415)  

This article is cited in 9 scientific papers (total in 9 papers)

Berezin Symbols and Schatten–von Neumann Classes

M. T. Karaev

Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences

Abstract: In terms of Berezin symbols, we give several criteria for operators to belong to the Schatten–von Neumann classes $\mathfrak S_p$. In particular, for functions of model operators, we give a complete answer to a question posed by Nordgren and Rosenthal.

DOI: https://doi.org/10.4213/mzm415

Full text: PDF file (207 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2002, 72:2, 185–192

Bibliographic databases:

UDC: 517.983
Received: 26.07.1999

Citation: M. T. Karaev, “Berezin Symbols and Schatten–von Neumann Classes”, Mat. Zametki, 72:2 (2002), 207–215; Math. Notes, 72:2 (2002), 185–192

Citation in format AMSBIB
\Bibitem{Kar02}
\by M.~T.~Karaev
\paper Berezin Symbols and Schatten--von Neumann Classes
\jour Mat. Zametki
\yr 2002
\vol 72
\issue 2
\pages 207--215
\mathnet{http://mi.mathnet.ru/mz415}
\crossref{https://doi.org/10.4213/mzm415}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1942546}
\zmath{https://zbmath.org/?q=an:1026.47013}
\transl
\jour Math. Notes
\yr 2002
\vol 72
\issue 2
\pages 185--192
\crossref{https://doi.org/10.1023/A:1019893710815}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000178299100020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141848604}


Linking options:
  • http://mi.mathnet.ru/eng/mz415
  • https://doi.org/10.4213/mzm415
  • http://mi.mathnet.ru/eng/mz/v72/i2/p207

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Pehlivan S., Karaev M. T., “Some results related with statistical convergence and Berezin symbols”, J. Math. Anal. Appl., 299:2 (2004), 333–340  crossref  mathscinet  zmath  isi  scopus  scopus
    2. Karaev M. T., “On some problems related to Berezin symbols”, C. R. Math. Acad. Sci. Paris, 340:10 (2005), 715–718  crossref  mathscinet  zmath  isi  scopus  scopus
    3. Karaev M. T., “Berezin symbol and invertibility of operators on the functional Hilbert spaces”, J. Funct. Anal., 238:1 (2006), 181–192  crossref  mathscinet  zmath  isi  scopus  scopus
    4. Karaev M. T., “On the Riccati equations”, Monatsh. Math., 155:2 (2008), 161–166  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    5. Karaev M.T., “Reproducing Kernels and Berezin Symbols Techniques in Various Questions of Operator Theory”, Complex Anal. Oper. Theory, 7:4 (2013), 983–1018  crossref  mathscinet  zmath  isi  scopus  scopus
    6. Karaev M.T., Guerdal M., Yamanci U., “Special Operator Classes and their Properties”, Banach J. Math. Anal., 7:2 (2013), 74–85  crossref  mathscinet  zmath  isi  scopus  scopus
    7. Garayev M.T., “the Berezin Number, Norm of a Hankel Operator and Related Topics”, Operator Algebras and Mathematical Physics, Operator Theory Advances and Applications, 247, eds. Bhattacharyya T., Dritschel M., Birkhauser Verlag Ag, 2015, 87–100  crossref  mathscinet  zmath  isi
    8. Karaev M.T., Gurdal M., Huban M.B., “Reproducing kernels, Engli? algebras and some applications”, Studia Math., 232:2 (2016), 113–141  crossref  mathscinet  zmath  isi  elib  scopus
    9. Gurdal M., Yamanci U., Garayev M., “Some Results For Operators on a Model Space”, Front. Math. China, 13:2 (2018), 287–300  crossref  mathscinet  zmath  isi  scopus  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:359
    Full text:140
    References:41
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020