RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2002, Volume 72, Issue 2, Pages 227–235 (Mi mz417)  

This article is cited in 3 scientific papers (total in 3 papers)

A Periodic Problem for the Landau–Ginzburg Equation

M. V. Komarov, I. A. Shishmarev

M. V. Lomonosov Moscow State University

Abstract: In this paper, we consider a periodic problem for the n-dimensional complex Landau–Ginzburg equation. It is shown that in the case of small initial data there exists a unique classical solution of this problem, and an asymptotics of this solution uniform in the space variable is given. The leading term of the asymptotics is exponentially decreasing in time.

DOI: https://doi.org/10.4213/mzm417

Full text: PDF file (214 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2002, 72:2, 204–211

Bibliographic databases:

UDC: 517.95
Received: 03.10.2000

Citation: M. V. Komarov, I. A. Shishmarev, “A Periodic Problem for the Landau–Ginzburg Equation”, Mat. Zametki, 72:2 (2002), 227–235; Math. Notes, 72:2 (2002), 204–211

Citation in format AMSBIB
\Bibitem{KomShi02}
\by M.~V.~Komarov, I.~A.~Shishmarev
\paper A Periodic Problem for the Landau--Ginzburg Equation
\jour Mat. Zametki
\yr 2002
\vol 72
\issue 2
\pages 227--235
\mathnet{http://mi.mathnet.ru/mz417}
\crossref{https://doi.org/10.4213/mzm417}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1942548}
\zmath{https://zbmath.org/?q=an:1031.35014}
\transl
\jour Math. Notes
\yr 2002
\vol 72
\issue 2
\pages 204--211
\crossref{https://doi.org/10.1023/A:1019897911724}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000178299100022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141737018}


Linking options:
  • http://mi.mathnet.ru/eng/mz417
  • https://doi.org/10.4213/mzm417
  • http://mi.mathnet.ru/eng/mz/v72/i2/p227

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. A. Levchenko, A. Yu. Trifonov, A. V. Shapovalov, “Asimptoticheskie resheniya nelokalnogo uravneniya Fishera–Kolmogorova–Petrovskogo–Piskunova na bolshikh vremenakh”, Kompyuternye issledovaniya i modelirovanie, 5:4 (2013), 543–558  mathnet  crossref
    2. Levchenko E.A., Shapovalov A.V., Trifonov A.Yu., “Pattern Formation in Terms of Semiclassically Limited Distribution on Lower Dimensional Manifolds for the Nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov Equation”, J. Phys. A-Math. Theor., 47:2 (2014), 025209  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    3. Levchenko E.A., Trifonov A.Yu., Shapovalov A.V., “Asymptotics of the Multidimensional Nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov Equation Near a Quasistationary Solution”, Russ. Phys. J., 58:7 (2015), 952–958  crossref  zmath  isi  scopus  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:216
    Full text:118
    References:38
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020