RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2002, Volume 72, Issue 2, Pages 283–291 (Mi mz422)  

This article is cited in 1 scientific paper (total in 1 paper)

Norm Estimates for Multiplication Operators in Hilbert Algebras

A. N. Urinovskii

M. V. Lomonosov Moscow State University

Abstract: In this paper, it is proved that for the bilinear operator defined by the operation of multiplication in an arbitrary associative algebra $\mathbf V$ with unit $\mathbf e_0$ over the fields $\mathbb R$ or $\mathbb C$, the infimum of its norms with respect to all scalar products in this algebra (with $||\mathbf e_0||=1$) is either infinite or at most $\sqrt {4/3}$. Sufficient conditions for this bound to be not less than $\sqrt {4/3}$ are obtained. The finiteness of this bound for infinite-dimensional Grassmann algebras was first proved by Kupsh and Smolyanov (this was used for constructing a functional representation for Fock superalgebras).

DOI: https://doi.org/10.4213/mzm422

Full text: PDF file (190 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2002, 72:2, 253–260

Bibliographic databases:

UDC: 517.986.22
Received: 21.05.2001

Citation: A. N. Urinovskii, “Norm Estimates for Multiplication Operators in Hilbert Algebras”, Mat. Zametki, 72:2 (2002), 283–291; Math. Notes, 72:2 (2002), 253–260

Citation in format AMSBIB
\Bibitem{Uri02}
\by A.~N.~Urinovskii
\paper Norm Estimates for Multiplication Operators in Hilbert Algebras
\jour Mat. Zametki
\yr 2002
\vol 72
\issue 2
\pages 283--291
\mathnet{http://mi.mathnet.ru/mz422}
\crossref{https://doi.org/10.4213/mzm422}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1942553}
\zmath{https://zbmath.org/?q=an:1029.46058}
\transl
\jour Math. Notes
\yr 2002
\vol 72
\issue 2
\pages 253--260
\crossref{https://doi.org/10.1023/A:1019858230379}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000178299100027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141513950}


Linking options:
  • http://mi.mathnet.ru/eng/mz422
  • https://doi.org/10.4213/mzm422
  • http://mi.mathnet.ru/eng/mz/v72/i2/p283

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Xia Xintao, Chen Xiaoyang, Wang Zhongyu, Zhang Yongzhen, “Norm Theory of Error Separation and its Application to Harmonic Distribution Parameters of Rolling Bearing Surfaces - Art. No. 63572M”, Signal Analysis, Measurement Theory, Photo-Electronic Technology, and Artificial Intelligence, Pts 1 and 2, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), 6357, no. Part 1-2, eds. Fang J., Wang Z., SPIE-Int Soc Optical Engineering, 2006, 63572M, M3572  crossref  isi  scopus  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:174
    Full text:78
    References:26
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020